Controlled synthesis of MOF-derived hollow and yolk–shell nanocages for improved water oxidation and selective ethylene glycol reformation

IF 42.9 Q1 ELECTROCHEMISTRY eScience Pub Date : 2023-10-01 DOI:10.1016/j.esci.2023.100118
Minghong Huang , Changsheng Cao , Li Liu , Wenbo Wei , Qi-Long Zhu , Zhenguo Huang
{"title":"Controlled synthesis of MOF-derived hollow and yolk–shell nanocages for improved water oxidation and selective ethylene glycol reformation","authors":"Minghong Huang ,&nbsp;Changsheng Cao ,&nbsp;Li Liu ,&nbsp;Wenbo Wei ,&nbsp;Qi-Long Zhu ,&nbsp;Zhenguo Huang","doi":"10.1016/j.esci.2023.100118","DOIUrl":null,"url":null,"abstract":"<div><p>Delicately designed metal–organic framework (MOF)-derived nanostructured electrocatalysts are essential for improving the reaction kinetics of the oxygen evolution reaction and tuning the selectivity of small organic molecule oxidation reactions. Herein, novel oxalate-modified hollow CoFe-based layered double hydroxide nanocages (h-CoFe-LDH NCs) and yolk–shell ZIF@CoFe-LDH nanocages (ys-ZIF@CoFe-LDH NCs) are developed through an etching–doping reconstruction strategy from a Co-based MOF precursor (ZIF-67). The distinctive nanostructures, along with the incorporation of the secondary metal element and intercalated oxalate groups, enable h-CoFe-LDH NCs and ys-ZIF@CoFe-LDH NCs to expose more active sites with high intrinsic activity. The resultant h-CoFe-LDH NCs exhibit outstanding OER activity with an overpotential of only 278 ​mV to deliver a current density of 50 ​mA ​cm<sup>−2</sup>. Additionally, controlling the reconstruction degree enables the formation of ys-ZIF@CoFe-LDH NCs with a yolk–shell nanocage nanostructure, which show outstanding electrocatalytic performance for the selective ethylene glycol oxidation reaction (EGOR) toward formate, with a Faradaic efficiency of up to 91%. Consequently, a hybrid water electrolysis system integrating the EGOR and the hydrogen evolution reaction using Pt/C||ys-ZIF@CoFe-LDH NCs is explored for energy-saving hydrogen production, requiring a cell voltage 127 ​mV lower than water electrolysis to achieve a current density of 50 ​mA ​cm<sup>−2</sup>. This work demonstrates a feasible way to design advanced MOF-derived electrocatalysts toward enhanced electrocatalytic reactions.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 5","pages":"Article 100118"},"PeriodicalIF":42.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723000368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 5

Abstract

Delicately designed metal–organic framework (MOF)-derived nanostructured electrocatalysts are essential for improving the reaction kinetics of the oxygen evolution reaction and tuning the selectivity of small organic molecule oxidation reactions. Herein, novel oxalate-modified hollow CoFe-based layered double hydroxide nanocages (h-CoFe-LDH NCs) and yolk–shell ZIF@CoFe-LDH nanocages (ys-ZIF@CoFe-LDH NCs) are developed through an etching–doping reconstruction strategy from a Co-based MOF precursor (ZIF-67). The distinctive nanostructures, along with the incorporation of the secondary metal element and intercalated oxalate groups, enable h-CoFe-LDH NCs and ys-ZIF@CoFe-LDH NCs to expose more active sites with high intrinsic activity. The resultant h-CoFe-LDH NCs exhibit outstanding OER activity with an overpotential of only 278 ​mV to deliver a current density of 50 ​mA ​cm−2. Additionally, controlling the reconstruction degree enables the formation of ys-ZIF@CoFe-LDH NCs with a yolk–shell nanocage nanostructure, which show outstanding electrocatalytic performance for the selective ethylene glycol oxidation reaction (EGOR) toward formate, with a Faradaic efficiency of up to 91%. Consequently, a hybrid water electrolysis system integrating the EGOR and the hydrogen evolution reaction using Pt/C||ys-ZIF@CoFe-LDH NCs is explored for energy-saving hydrogen production, requiring a cell voltage 127 ​mV lower than water electrolysis to achieve a current density of 50 ​mA ​cm−2. This work demonstrates a feasible way to design advanced MOF-derived electrocatalysts toward enhanced electrocatalytic reactions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
控制合成MOF衍生的中空和黄壳纳米笼,用于改善水氧化和选择性乙二醇重整
精心设计的金属-有机框架(MOF)衍生的纳米结构电催化剂对于改善析氧反应的反应动力学和调节小有机分子氧化反应的选择性至关重要。在此,新型草酸盐改性的空心CoFe基层状双氢氧化物纳米笼(h-CoFe-LDH NCs)和卵黄壳ZIF@CoFe-LDH纳米笼(ys-ZIF@CoFe-LDHNCs)是通过钴基MOF前体(ZIF-67)的蚀刻-掺杂重建策略开发的。独特的纳米结构,以及第二金属元素和嵌入的草酸盐基团的结合,使h-CoFe-LDH NCs和ys-ZIF@CoFe-LDHNCs暴露出更多具有高内在活性的活性位点。所得的h-CoFe-LDH NCs表现出优异的OER活性,过电位仅为278​mV以提供50的电流密度​毫安​cm−2。此外,控制重建程度可以形成ys-ZIF@CoFe-LDH具有蛋黄壳纳米笼纳米结构的NCs,对乙二醇对甲酸盐的选择性氧化反应(EGOR)表现出出色的电催化性能,法拉第效率高达91%。因此,使用Pt/C将EGOR和析氢反应集成在一起的混合水电解系统||ys-ZIF@CoFe-LDHNCs被探索用于节能制氢,需要电池电压127​比水电解低mV以实现50的电流密度​毫安​cm−2。这项工作证明了设计先进的MOF衍生电催化剂以增强电催化反应的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
2-methylimidazole
¥9.00~¥5797.00
阿拉丁
Nafion solution |5 wt%
¥2059.90~¥2600.00
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
期刊最新文献
Understanding synergistic catalysis on Pt–Cu diatomic sites via operando X-ray absorption spectroscopy in sulfur redox reactions Characteristics, materials, and performance of Ru-containing oxide cathode materials for rechargeable batteries Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems Recent advances in flexible self-oscillating actuators Anodes for low-temperature rechargeable batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1