Representation theoretic patterns in multi-frequency class averaging for three-dimensional cryo-electron microscopy

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED Information and Inference-A Journal of the Ima Pub Date : 2021-02-01 DOI:10.1093/imaiai/iaab012
Yifeng Fan;Tingran Gao;Zhizhen Zhao
{"title":"Representation theoretic patterns in multi-frequency class averaging for three-dimensional cryo-electron microscopy","authors":"Yifeng Fan;Tingran Gao;Zhizhen Zhao","doi":"10.1093/imaiai/iaab012","DOIUrl":null,"url":null,"abstract":"We develop in this paper a novel intrinsic classification algorithm—multi-frequency class averaging (MFCA)—for classifying noisy projection images obtained from three-dimensional cryo-electron microscopy by the similarity among their viewing directions. This new algorithm leverages multiple irreducible representations of the unitary group to introduce additional redundancy into the representation of the optimal in-plane rotational alignment, extending and outperforming the existing class averaging algorithm that uses only a single representation. The formal algebraic model and representation theoretic patterns of the proposed MFCA algorithm extend the framework of Hadani and Singer to arbitrary irreducible representations of the unitary group. We conceptually establish the consistency and stability of MFCA by inspecting the spectral properties of a generalized local parallel transport operator through the lens of Wigner \n<tex>$D$</tex>\n-matrices. We demonstrate the efficacy of the proposed algorithm with numerical experiments.","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"10 3","pages":"723-771"},"PeriodicalIF":1.4000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imaiai/iaab012","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9579219/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 8

Abstract

We develop in this paper a novel intrinsic classification algorithm—multi-frequency class averaging (MFCA)—for classifying noisy projection images obtained from three-dimensional cryo-electron microscopy by the similarity among their viewing directions. This new algorithm leverages multiple irreducible representations of the unitary group to introduce additional redundancy into the representation of the optimal in-plane rotational alignment, extending and outperforming the existing class averaging algorithm that uses only a single representation. The formal algebraic model and representation theoretic patterns of the proposed MFCA algorithm extend the framework of Hadani and Singer to arbitrary irreducible representations of the unitary group. We conceptually establish the consistency and stability of MFCA by inspecting the spectral properties of a generalized local parallel transport operator through the lens of Wigner $D$ -matrices. We demonstrate the efficacy of the proposed algorithm with numerical experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维冷冻电子显微镜多频类平均中的表示论模式
在本文中,我们开发了一种新的内在分类算法——多频类平均(MFCA),用于通过三维冷冻电子显微镜获得的有噪声投影图像的观看方向之间的相似性对其进行分类。这种新算法利用酉群的多个不可约表示,将额外的冗余引入最优平面内旋转对准的表示中,扩展并优于仅使用单个表示的现有类平均算法。所提出的MFCA算法的形式代数模型和表示理论模式将Hadani和Singer的框架扩展到酉群的任意不可约表示。我们通过Wigner$D$-矩阵的透镜检验广义局部平行输运算子的谱性质,从概念上建立了MFCA的一致性和稳定性。我们通过数值实验证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
期刊最新文献
The Dyson equalizer: adaptive noise stabilization for low-rank signal detection and recovery. Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise. Phase transition and higher order analysis of Lq regularization under dependence. On statistical inference with high-dimensional sparse CCA. Black-box tests for algorithmic stability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1