$\mathsf{HyHooVer}$: Verification and Parameter Synthesis in Stochastic Systems With Hybrid State Space Using Optimistic Optimization

Negin Musavi;Dawei Sun;Sayan Mitra;Geir E. Dullerud;Sanjay Shakkottai
{"title":"$\\mathsf{HyHooVer}$: Verification and Parameter Synthesis in Stochastic Systems With Hybrid State Space Using Optimistic Optimization","authors":"Negin Musavi;Dawei Sun;Sayan Mitra;Geir E. Dullerud;Sanjay Shakkottai","doi":"10.1109/OJCSYS.2023.3299152","DOIUrl":null,"url":null,"abstract":"This article presents a new method for model-free verification of a general class of control systems with unknown nonlinear dynamics, where the state space has both a continuum-based and a discrete component. Specifically, we focus on finding what choices of initial states or parameters maximize a given probabilistic objective function over all choices of initial states or parameters from such hybrid state space, without having exact knowledge of the system dynamics. We introduce the notion of \n<italic>set initialized Markov chains</i>\n to represent such systems. Our method utilizes generalized techniques from multi-armed bandit theory on the continuum, in an attempt to make an efficient use of the available sampling budget. We introduce a new algorithm called the \n<italic>Hybrid Hierarchical Optimistic Optimization</i>\n (HyHOO) algorithm, which is designed to address the problem outlined in this paper. The algorithm combines elements of the existing Hierarchical Optimistic Optimization (HOO) bandit algorithm with carefully chosen parameters to create a fresh perspective on the problem. By viewing the problem as a multi-armed bandit problem, we are able to provide theoretical regret bounds on sample efficiency of our tool, \n<inline-formula><tex-math>$\\mathsf{HyHooVer}$</tex-math></inline-formula>\n. This is achieved by making assumptions about the smoothness of the underlying system. The results of experiments in formal verification and parameter synthesis of variety of scenarios, indicate that the proposed method is effective and efficient when applied to realistic-sized problems and it performs well compared to other methods, specifically PlasmaLab, BoTorch, and the baseline HOO algorithm. Specifically, it demonstrates better efficiency when employed on models with large state space and when the objective function has sharp slopes in comparison with other tools.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"2 ","pages":"263-276"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552933/9973428/10195190.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10195190/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a new method for model-free verification of a general class of control systems with unknown nonlinear dynamics, where the state space has both a continuum-based and a discrete component. Specifically, we focus on finding what choices of initial states or parameters maximize a given probabilistic objective function over all choices of initial states or parameters from such hybrid state space, without having exact knowledge of the system dynamics. We introduce the notion of set initialized Markov chains to represent such systems. Our method utilizes generalized techniques from multi-armed bandit theory on the continuum, in an attempt to make an efficient use of the available sampling budget. We introduce a new algorithm called the Hybrid Hierarchical Optimistic Optimization (HyHOO) algorithm, which is designed to address the problem outlined in this paper. The algorithm combines elements of the existing Hierarchical Optimistic Optimization (HOO) bandit algorithm with carefully chosen parameters to create a fresh perspective on the problem. By viewing the problem as a multi-armed bandit problem, we are able to provide theoretical regret bounds on sample efficiency of our tool, $\mathsf{HyHooVer}$ . This is achieved by making assumptions about the smoothness of the underlying system. The results of experiments in formal verification and parameter synthesis of variety of scenarios, indicate that the proposed method is effective and efficient when applied to realistic-sized problems and it performs well compared to other methods, specifically PlasmaLab, BoTorch, and the baseline HOO algorithm. Specifically, it demonstrates better efficiency when employed on models with large state space and when the objective function has sharp slopes in comparison with other tools.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
$\mathsf{HyHooVer}$:使用优化的混合状态空间随机系统的验证和参数综合
本文提出了一种新的方法,用于对一类具有未知非线性动力学的控制系统进行无模型验证,其中状态空间既有基于连续体的分量,也有离散分量。具体而言,我们专注于在没有系统动力学的确切知识的情况下,在这种混合状态空间中,在所有初始状态或参数的选择中,找出初始状态或初始参数的选择使给定的概率目标函数最大化。我们引入集合初始化马尔可夫链的概念来表示这样的系统。我们的方法利用了连续体上多武装土匪理论的广义技术,试图有效利用可用的采样预算。我们介绍了一种新的算法,称为混合层次优化算法(HyHOO),它是为了解决本文中概述的问题而设计的。该算法将现有的分层优化(HOO)土匪算法的元素与精心选择的参数相结合,为该问题创造了一个新的视角。通过将该问题视为一个多武装土匪问题,我们能够提供我们的工具$\mathsf{HyHooVer}$的样本效率的理论遗憾界。这是通过对底层系统的平滑性进行假设来实现的。在各种场景的形式验证和参数合成中的实验结果表明,该方法在应用于实际大小的问题时是有效的,并且与其他方法(特别是PlasmaLab、BoTorch和基线HOO算法)相比表现良好。具体来说,与其他工具相比,当在具有大状态空间的模型上使用时,以及当目标函数具有陡峭的斜率时,它表现出更好的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum to “Learning to Boost the Performance of Stable Nonlinear Systems” Generalizing Robust Control Barrier Functions From a Controller Design Perspective 2024 Index IEEE Open Journal of Control Systems Vol. 3 Front Cover Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1