Global and Local Convergence Analysis of a Bandit Learning Algorithm in Merely Coherent Games

Yuanhanqing Huang;Jianghai Hu
{"title":"Global and Local Convergence Analysis of a Bandit Learning Algorithm in Merely Coherent Games","authors":"Yuanhanqing Huang;Jianghai Hu","doi":"10.1109/OJCSYS.2023.3316071","DOIUrl":null,"url":null,"abstract":"Non-cooperative games serve as a powerful framework for capturing the interactions among self-interested players and have broad applicability in modeling a wide range of practical scenarios, ranging from power management to path planning of self-driving vehicles. Although most existing solution algorithms assume the availability of first-order information or full knowledge of the objectives and others' action profiles, there are situations where the only accessible information at players' disposal is the realized objective function values. In this article, we devise a bandit online learning algorithm that integrates the optimistic mirror descent scheme and multi-point pseudo-gradient estimates. We further prove that the generated actual sequence of play converges a.s. to a critical point if the game under study is globally merely coherent, without resorting to extra Tikhonov regularization terms or additional norm conditions. We also discuss the convergence properties of the proposed bandit learning algorithm in locally merely coherent games. Finally, we illustrate the validity of the proposed algorithm via two two-player minimax problems and a cognitive radio bandwidth allocation game.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"2 ","pages":"366-379"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552933/9973428/10251984.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10251984/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Non-cooperative games serve as a powerful framework for capturing the interactions among self-interested players and have broad applicability in modeling a wide range of practical scenarios, ranging from power management to path planning of self-driving vehicles. Although most existing solution algorithms assume the availability of first-order information or full knowledge of the objectives and others' action profiles, there are situations where the only accessible information at players' disposal is the realized objective function values. In this article, we devise a bandit online learning algorithm that integrates the optimistic mirror descent scheme and multi-point pseudo-gradient estimates. We further prove that the generated actual sequence of play converges a.s. to a critical point if the game under study is globally merely coherent, without resorting to extra Tikhonov regularization terms or additional norm conditions. We also discuss the convergence properties of the proposed bandit learning algorithm in locally merely coherent games. Finally, we illustrate the validity of the proposed algorithm via two two-player minimax problems and a cognitive radio bandwidth allocation game.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纯相干对策中Bandit学习算法的全局和局部收敛性分析
非合作游戏是捕捉自利玩家之间互动的强大框架,在建模从电源管理到自动驾驶汽车路径规划的各种实际场景方面具有广泛的适用性。尽管大多数现有的解决方案算法假设一阶信息的可用性或对目标和其他人的行动概况的充分了解,但在某些情况下,玩家唯一可获得的信息是已实现的目标函数值。在本文中,我们设计了一种结合乐观镜像下降方案和多点伪梯度估计的土匪在线学习算法。我们进一步证明,如果所研究的博弈在全局上仅仅是一致的,则生成的实际博弈序列收敛到一个临界点,而不诉诸于额外的Tikhonov正则化项或额外的范数条件。我们还讨论了所提出的土匪学习算法在局部纯相干对策中的收敛性。最后,我们通过两个两人极小极大问题和一个认知无线电带宽分配博弈来说明所提出算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum to “Learning to Boost the Performance of Stable Nonlinear Systems” Generalizing Robust Control Barrier Functions From a Controller Design Perspective 2024 Index IEEE Open Journal of Control Systems Vol. 3 Front Cover Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1