Mode Reduction for Markov Jump Systems

Zhe Du;Laura Balzano;Necmiye Ozay
{"title":"Mode Reduction for Markov Jump Systems","authors":"Zhe Du;Laura Balzano;Necmiye Ozay","doi":"10.1109/OJCSYS.2022.3212613","DOIUrl":null,"url":null,"abstract":"Switched systems are capable of modeling processes with underlying dynamics that may change abruptly over time. To achieve accurate modeling in practice, one may need a large number of modes, but this may in turn increase the model complexity drastically. Existing work on reducing system complexity mainly considers state space reduction, whereas reducing the number of modes is less studied. In this work, we consider Markov jump linear systems (MJSs), a special class of switched systems where the active mode switches according to a Markov chain, and several issues associated with its mode complexity. Specifically, inspired by clustering techniques from unsupervised learning, we are able to construct a reduced MJS with fewer modes that approximates the original MJS well under various metrics. Furthermore, both theoretically and empirically, we show how one can use the reduced MJS to analyze stability and design controllers with significant reduction in computational cost while achieving guaranteed accuracy.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"1 ","pages":"335-353"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552933/9683993/09913637.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9913637/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Switched systems are capable of modeling processes with underlying dynamics that may change abruptly over time. To achieve accurate modeling in practice, one may need a large number of modes, but this may in turn increase the model complexity drastically. Existing work on reducing system complexity mainly considers state space reduction, whereas reducing the number of modes is less studied. In this work, we consider Markov jump linear systems (MJSs), a special class of switched systems where the active mode switches according to a Markov chain, and several issues associated with its mode complexity. Specifically, inspired by clustering techniques from unsupervised learning, we are able to construct a reduced MJS with fewer modes that approximates the original MJS well under various metrics. Furthermore, both theoretically and empirically, we show how one can use the reduced MJS to analyze stability and design controllers with significant reduction in computational cost while achieving guaranteed accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
马尔可夫跳跃系统的模式约简
交换系统能够对具有潜在动态的过程进行建模,这些动态可能随着时间的推移而突然变化。为了在实践中实现准确的建模,可能需要大量的模式,但这反过来可能会大大增加模型的复杂性。现有的降低系统复杂性的工作主要考虑状态空间的减少,而减少模式数量的研究较少。在这项工作中,我们考虑了马尔可夫跳跃线性系统(MJSs),这是一类特殊的切换系统,其中主动模式根据马尔可夫链进行切换,以及与其模式复杂性相关的几个问题。具体来说,受无监督学习的聚类技术的启发,我们能够构建一个具有较少模式的简化MJS,在各种度量下很好地近似原始MJS。此外,无论从理论上还是从经验上,我们都展示了如何使用简化的MJS来分析稳定性并设计控制器,同时显著降低计算成本,同时实现有保证的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum to “Learning to Boost the Performance of Stable Nonlinear Systems” Generalizing Robust Control Barrier Functions From a Controller Design Perspective 2024 Index IEEE Open Journal of Control Systems Vol. 3 Front Cover Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1