Performance Comparison of Typical Physics Engines Using Robot Models With Multiple Joints

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2023-09-27 DOI:10.1109/LRA.2023.3320019
Chengye Liao;Yarong Wang;Xuda Ding;Yi Ren;Xiaoming Duan;Jianping He
{"title":"Performance Comparison of Typical Physics Engines Using Robot Models With Multiple Joints","authors":"Chengye Liao;Yarong Wang;Xuda Ding;Yi Ren;Xiaoming Duan;Jianping He","doi":"10.1109/LRA.2023.3320019","DOIUrl":null,"url":null,"abstract":"Physics engines are essential components in simulating complex robotic systems. The accuracy and computational speed of these engines are crucial for reliable real-time simulation. This letter comprehensively evaluates the performance of five common physics engines, i.e., ODE, Bullet, DART, MuJoCo, and PhysX, and provides guidance on their suitability for different scenarios. Specifically, we conduct three experiments using complex multi-joint robot models to test the stability, accuracy, and friction effectiveness. Instead of using simple implicit shapes, we use complete robot models that better reflect real-world scenarios. In addition, we conduct experiments under the default most suitable simulation environment configuration for each physics engine. Our results show that MujoCo performs best in linear stability, PhysX in angular stability, MuJoCo in accuracy, and DART in friction simulations.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"8 11","pages":"7520-7526"},"PeriodicalIF":4.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10265175/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Physics engines are essential components in simulating complex robotic systems. The accuracy and computational speed of these engines are crucial for reliable real-time simulation. This letter comprehensively evaluates the performance of five common physics engines, i.e., ODE, Bullet, DART, MuJoCo, and PhysX, and provides guidance on their suitability for different scenarios. Specifically, we conduct three experiments using complex multi-joint robot models to test the stability, accuracy, and friction effectiveness. Instead of using simple implicit shapes, we use complete robot models that better reflect real-world scenarios. In addition, we conduct experiments under the default most suitable simulation environment configuration for each physics engine. Our results show that MujoCo performs best in linear stability, PhysX in angular stability, MuJoCo in accuracy, and DART in friction simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用多关节机器人模型的典型物理发动机性能比较
物理引擎是模拟复杂机器人系统的重要组成部分。这些引擎的精度和计算速度对于可靠的实时模拟至关重要。这封信全面评估了五种常见物理引擎的性能,即ODE、Bullet、DART、MuJoCo和PhysX,并就其适用于不同场景提供了指导。具体来说,我们使用复杂的多关节机器人模型进行了三个实验,以测试稳定性、准确性和摩擦有效性。我们不使用简单的隐含形状,而是使用更能反映真实世界场景的完整机器人模型。此外,我们在默认的最适合每个物理引擎的模拟环境配置下进行实验。我们的结果表明,MujoCo在线性稳定性方面表现最佳,PhysX在角度稳定性方面表现最好,MujoCo在精度方面表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Correction To: “Design Models and Performance Analysis for a Novel Shape Memory Alloy-Actuated Wearable Hand Exoskeleton for Rehabilitation” NavTr: Object-Goal Navigation With Learnable Transformer Queries A Diffusion-Based Data Generator for Training Object Recognition Models in Ultra-Range Distance Position Prediction for Space Teleoperation With SAO-CNN-BiGRU-Attention Algorithm MR-ULINS: A Tightly-Coupled UWB-LiDAR-Inertial Estimator With Multi-Epoch Outlier Rejection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1