Modeling and MPC-Based Pose Tracking for Wheeled Bipedal Robot

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2023-10-04 DOI:10.1109/LRA.2023.3322084
Jianqiao Yu;Zhangzhen Zhu;Junyuan Lu;Sicheng Yin;Yu Zhang
{"title":"Modeling and MPC-Based Pose Tracking for Wheeled Bipedal Robot","authors":"Jianqiao Yu;Zhangzhen Zhu;Junyuan Lu;Sicheng Yin;Yu Zhang","doi":"10.1109/LRA.2023.3322084","DOIUrl":null,"url":null,"abstract":"In this letter, we propose a model predictive control (MPC)-based robot pose controller for our newly designed wheeled bipedal robot (WBR). The proposed controller uses the virtual model control concept, allowing for wider applicability by ignoring the leg dynamics. By directly incorporating the non-holonomic constraint of the wheels into the dynamic equation, a wheeled rigid dynamic model is proposed to maximize the motion flexibility and minimize the model order. A hierarchical MPC control structure is employed to track the desired pose while considering the non-minimal phase property of WBRs in real time. To enhance the autonomy of the robot, we propose a state estimator that utilizes kinematics and inertial sensor data to provide a high-speed and accurate estimation of the robot's state. Both simulation and real-world experiments demonstrate that the proposed method can track a pose trajectory with lower error than traditional feedback control methods. The effectiveness of the estimator is validated through comparison with motion capture cameras and vision-based odometry.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"8 12","pages":"7881-7888"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10271551/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this letter, we propose a model predictive control (MPC)-based robot pose controller for our newly designed wheeled bipedal robot (WBR). The proposed controller uses the virtual model control concept, allowing for wider applicability by ignoring the leg dynamics. By directly incorporating the non-holonomic constraint of the wheels into the dynamic equation, a wheeled rigid dynamic model is proposed to maximize the motion flexibility and minimize the model order. A hierarchical MPC control structure is employed to track the desired pose while considering the non-minimal phase property of WBRs in real time. To enhance the autonomy of the robot, we propose a state estimator that utilizes kinematics and inertial sensor data to provide a high-speed and accurate estimation of the robot's state. Both simulation and real-world experiments demonstrate that the proposed method can track a pose trajectory with lower error than traditional feedback control methods. The effectiveness of the estimator is validated through comparison with motion capture cameras and vision-based odometry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轮式两足机器人的建模与MPC姿态跟踪
在这封信中,我们为我们新设计的轮式两足机器人(WBR)提出了一种基于模型预测控制(MPC)的机器人姿态控制器。所提出的控制器使用虚拟模型控制概念,通过忽略腿部动力学,允许更广泛的适用性。通过将车轮的非完整约束直接纳入动力学方程,提出了一种车轮刚性动力学模型,以最大限度地提高运动灵活性并最小化模型阶数。采用分层MPC控制结构来跟踪期望的姿态,同时实时考虑WBR的非最小相位特性。为了增强机器人的自主性,我们提出了一种状态估计器,该估计器利用运动学和惯性传感器数据来提供机器人状态的高速准确估计。仿真和真实世界的实验都表明,与传统的反馈控制方法相比,该方法可以以更低的误差跟踪姿态轨迹。通过与运动捕捉相机和基于视觉的里程计的比较,验证了该估计器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Integrated Grasping Controller Leveraging Optical Proximity Sensors for Simultaneous Contact, Impact Reduction, and Force Control Single-Motor-Driven (4 + 2)-Fingered Robotic Gripper Capable of Expanding the Workable Space in the Extremely Confined Environment CMGFA: A BEV Segmentation Model Based on Cross-Modal Group-Mix Attention Feature Aggregator Visual-Inertial Localization Leveraging Skylight Polarization Pattern Constraints Demonstration Data-Driven Parameter Adjustment for Trajectory Planning in Highly Constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1