{"title":"Acidity, Crystallite Size and Pore Structure as Key Factors Influencing 1,3,5-Trimethylbenzene Hydrodealkylation Performance of NiMoS/ZSM-5","authors":"Shufeng Shan, Yiting Tian, Feifei Chen, Shikui Wu, Rujin Zhou, Ying Xie, Ning Li, Xingye Zeng, Cunhui Lin, Wei Yu","doi":"10.1007/s10563-021-09344-6","DOIUrl":null,"url":null,"abstract":"<div><p>NiMoS supported on ZSM-5 with different Si/Al ratio, crystallite size and pore structure was prepared by incipient impregnation method and applied in 1, 3, 5-trimethylbenzene (1, 3, 5-TMB) hydrodealkylation (HDAK). The physicochemical properties of samples were characterized by XRD, FTIR, SEM, N<sub>2</sub> adsorption–desorption, NH<sub>3</sub>-TPD, Py-FTIR, H<sub>2</sub>-TPR, HRTEM and TGA. It is demonstrated that for microporous NiMoS/ZSM-5, acid amount and crystallite size of HZSM-5 are key factors affecting HDAK performance. The larger acid amount and smaller crystallite size can promote the conversion of 1, 3, 5-TMB, especially the dealkylation reaction, resulting in higher BTX yield. Compared to NiMoZ-3, mesopores in micro-mesoporous NiMoAKZ-3 are beneficial to accessibility of 1, 3, 5-TMB to NiMoS and acid sites in close proximity, and the diffusion of reactant and product molecules inside pores, thus resulting in superior HDAK performance of NiMoAKZ-3. Moreover, the reaction network of 1, 3, 5-TMB HDAK was revealed according to product distribution.</p><h3>Graphic Abstract</h3><p>NiMoS supported on ZSM-5 was developed for heavy aromatic hydrodealkylation (HDAK). Acid amount and crystallite size of microporous ZSM-5 are key factors affecting 1,3,5-trimethylbenzene (1,3,5-TMB) HDAK. Mesopores inside ZSM-5 facilitate accessibility of 1,3,5-TMB to NiMoS and acid sites in close proximity and improve HDAK performance.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"26 1","pages":"35 - 45"},"PeriodicalIF":2.1000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10563-021-09344-6","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-021-09344-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
NiMoS supported on ZSM-5 with different Si/Al ratio, crystallite size and pore structure was prepared by incipient impregnation method and applied in 1, 3, 5-trimethylbenzene (1, 3, 5-TMB) hydrodealkylation (HDAK). The physicochemical properties of samples were characterized by XRD, FTIR, SEM, N2 adsorption–desorption, NH3-TPD, Py-FTIR, H2-TPR, HRTEM and TGA. It is demonstrated that for microporous NiMoS/ZSM-5, acid amount and crystallite size of HZSM-5 are key factors affecting HDAK performance. The larger acid amount and smaller crystallite size can promote the conversion of 1, 3, 5-TMB, especially the dealkylation reaction, resulting in higher BTX yield. Compared to NiMoZ-3, mesopores in micro-mesoporous NiMoAKZ-3 are beneficial to accessibility of 1, 3, 5-TMB to NiMoS and acid sites in close proximity, and the diffusion of reactant and product molecules inside pores, thus resulting in superior HDAK performance of NiMoAKZ-3. Moreover, the reaction network of 1, 3, 5-TMB HDAK was revealed according to product distribution.
Graphic Abstract
NiMoS supported on ZSM-5 was developed for heavy aromatic hydrodealkylation (HDAK). Acid amount and crystallite size of microporous ZSM-5 are key factors affecting 1,3,5-trimethylbenzene (1,3,5-TMB) HDAK. Mesopores inside ZSM-5 facilitate accessibility of 1,3,5-TMB to NiMoS and acid sites in close proximity and improve HDAK performance.
期刊介绍:
Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.