{"title":"Real-Time Implementation of Long-Horizon Direct Model Predictive Control on an Embedded System","authors":"Eyke Liegmann;Petros Karamanakos;Ralph Kennel","doi":"10.1109/OJIA.2021.3133477","DOIUrl":null,"url":null,"abstract":"This paper deals with the real-time implementation of a long-horizon finite control set model predictive control (FCS-MPC) algorithm on an embedded system. The targeted application is a medium-voltage drive system which means that operation at a very low switching frequency is needed so that the switching power losses are kept relatively low. However, a small sampling interval is required to achieve a fine granularity of switching, and thus ensure superior system performance. This renders the real-time implementation of the controller challenging. To facilitate this, a high level synthesis (HLS) tool, which synthesizes C\n<monospace>++</monospace>\n code into VHDL, is employed to enable a higher level of abstraction and faster prototype development of the real-time solver of the long-horizon FCS-MPC problem, namely the sphere decoder. Experimental results based on a small-scale prototype, consisting of a three-level neutral point clamped (NPC) inverter and an induction machine, confirm that the algorithm can be executed in real time within the targeted control period of 25 \n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\ns.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"3 ","pages":"1-12"},"PeriodicalIF":7.9000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/9666452/09640575.pdf","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9640575/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 14
Abstract
This paper deals with the real-time implementation of a long-horizon finite control set model predictive control (FCS-MPC) algorithm on an embedded system. The targeted application is a medium-voltage drive system which means that operation at a very low switching frequency is needed so that the switching power losses are kept relatively low. However, a small sampling interval is required to achieve a fine granularity of switching, and thus ensure superior system performance. This renders the real-time implementation of the controller challenging. To facilitate this, a high level synthesis (HLS) tool, which synthesizes C
++
code into VHDL, is employed to enable a higher level of abstraction and faster prototype development of the real-time solver of the long-horizon FCS-MPC problem, namely the sphere decoder. Experimental results based on a small-scale prototype, consisting of a three-level neutral point clamped (NPC) inverter and an induction machine, confirm that the algorithm can be executed in real time within the targeted control period of 25
$\mu$
s.