Real-Time Implementation of Long-Horizon Direct Model Predictive Control on an Embedded System

IF 7.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Industry Applications Pub Date : 2021-12-07 DOI:10.1109/OJIA.2021.3133477
Eyke Liegmann;Petros Karamanakos;Ralph Kennel
{"title":"Real-Time Implementation of Long-Horizon Direct Model Predictive Control on an Embedded System","authors":"Eyke Liegmann;Petros Karamanakos;Ralph Kennel","doi":"10.1109/OJIA.2021.3133477","DOIUrl":null,"url":null,"abstract":"This paper deals with the real-time implementation of a long-horizon finite control set model predictive control (FCS-MPC) algorithm on an embedded system. The targeted application is a medium-voltage drive system which means that operation at a very low switching frequency is needed so that the switching power losses are kept relatively low. However, a small sampling interval is required to achieve a fine granularity of switching, and thus ensure superior system performance. This renders the real-time implementation of the controller challenging. To facilitate this, a high level synthesis (HLS) tool, which synthesizes C\n<monospace>++</monospace>\n code into VHDL, is employed to enable a higher level of abstraction and faster prototype development of the real-time solver of the long-horizon FCS-MPC problem, namely the sphere decoder. Experimental results based on a small-scale prototype, consisting of a three-level neutral point clamped (NPC) inverter and an induction machine, confirm that the algorithm can be executed in real time within the targeted control period of 25 \n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\ns.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"3 ","pages":"1-12"},"PeriodicalIF":7.9000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/9666452/09640575.pdf","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9640575/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 14

Abstract

This paper deals with the real-time implementation of a long-horizon finite control set model predictive control (FCS-MPC) algorithm on an embedded system. The targeted application is a medium-voltage drive system which means that operation at a very low switching frequency is needed so that the switching power losses are kept relatively low. However, a small sampling interval is required to achieve a fine granularity of switching, and thus ensure superior system performance. This renders the real-time implementation of the controller challenging. To facilitate this, a high level synthesis (HLS) tool, which synthesizes C ++ code into VHDL, is employed to enable a higher level of abstraction and faster prototype development of the real-time solver of the long-horizon FCS-MPC problem, namely the sphere decoder. Experimental results based on a small-scale prototype, consisting of a three-level neutral point clamped (NPC) inverter and an induction machine, confirm that the algorithm can be executed in real time within the targeted control period of 25 $\mu$ s.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于嵌入式系统的长期直接模型预测控制的实时实现
本文研究了一种在嵌入式系统上实时实现的长期有限控制集模型预测控制(FCS-MPC)算法。目标应用是中压驱动系统,这意味着需要在非常低的开关频率下操作,从而保持相对低的开关功率损耗。然而,需要较小的采样间隔来实现精细的切换粒度,从而确保卓越的系统性能。这使得控制器的实时实现具有挑战性。为了促进这一点,采用了一种将C++代码合成为VHDL的高级合成(HLS)工具,以实现更高级别的抽象和更快的原型开发,从而实现长期FCS-MPC问题的实时求解器,即球体解码器。基于由三电平中点箝位(NPC)逆变器和感应电机组成的小型样机的实验结果证实,该算法可以在25$\mu$s的目标控制周期内实时执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
期刊最新文献
IEEE Industry Applications Society Information Cooperative UAV Scheduling for Power Grid Deicing Using Fuzzy Learning and Evolutionary Optimization State-of-the-Art of CSR Design for Novel Applications Trend Front Cover IEEE Open Journal of Industry Applications Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1