In-Situ Measurement and Investigation of Winding Loss in High-Frequency Cored Transformers Under Large-Signal Condition

IF 7.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Industry Applications Pub Date : 2022-07-25 DOI:10.1109/OJIA.2022.3193584
Navid Rasekh;Jun Wang;Xibo Yuan
{"title":"In-Situ Measurement and Investigation of Winding Loss in High-Frequency Cored Transformers Under Large-Signal Condition","authors":"Navid Rasekh;Jun Wang;Xibo Yuan","doi":"10.1109/OJIA.2022.3193584","DOIUrl":null,"url":null,"abstract":"This paper presents an in-situ measurement method to accurately characterize the winding loss in high-frequency (HF) transformers, which is challenging to quantify in power electronics applications. This approach adapts the reactive voltage cancellation concept to measure the complete winding loss in HF transformers with the presence of the magnetic core and the load on the secondary side, while this concept was originally brought up for core loss measurement. As an in-situ method, the proposed testing method can factor in the non-linear winding loss elements impacted by the magnetic field interaction between the windings and the core under the large-signal operation, which are not properly assessed in existing approaches. The presented method significantly reduces the sensitivity of the measurement errors linked to the probe phase discrepancy, since the resistive winding loss is well separated out from the core loss. The acquired experimental results are compared and verified with other common empirical measurement methods and three-dimensional (3D) finite element analysis (FEA). As the finding, the measured winding AC resistance is found to be correlated with the load level. Furthermore, treating the complex winding loss and core loss as a black-box problem, this paper proposes a “total loss map” as an engineering solution to practically distribute the measured loss data of magnetic components to the end-users to enable quick and accurate loss estimation/modelling.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"3 ","pages":"164-177"},"PeriodicalIF":7.9000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/9666452/09839507.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9839507/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents an in-situ measurement method to accurately characterize the winding loss in high-frequency (HF) transformers, which is challenging to quantify in power electronics applications. This approach adapts the reactive voltage cancellation concept to measure the complete winding loss in HF transformers with the presence of the magnetic core and the load on the secondary side, while this concept was originally brought up for core loss measurement. As an in-situ method, the proposed testing method can factor in the non-linear winding loss elements impacted by the magnetic field interaction between the windings and the core under the large-signal operation, which are not properly assessed in existing approaches. The presented method significantly reduces the sensitivity of the measurement errors linked to the probe phase discrepancy, since the resistive winding loss is well separated out from the core loss. The acquired experimental results are compared and verified with other common empirical measurement methods and three-dimensional (3D) finite element analysis (FEA). As the finding, the measured winding AC resistance is found to be correlated with the load level. Furthermore, treating the complex winding loss and core loss as a black-box problem, this paper proposes a “total loss map” as an engineering solution to practically distribute the measured loss data of magnetic components to the end-users to enable quick and accurate loss estimation/modelling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大信号条件下高频铁心变压器绕组损耗的现场测量与研究
本文提出了一种现场测量方法来准确表征高频(HF)变压器的绕组损耗,这在电力电子应用中很难量化。这种方法采用无功电压消除概念来测量高频变压器中存在磁芯和二次侧负载的完整绕组损耗,而这一概念最初是为测量铁芯损耗而提出的。作为一种现场方法,所提出的测试方法可以考虑在大信号操作下受绕组和铁芯之间磁场相互作用影响的非线性绕组损耗元件,而现有方法没有对这些元件进行适当评估。所提出的方法显著降低了与探头相位差相关的测量误差的灵敏度,因为电阻绕组损耗与铁芯损耗很好地分离。将获得的实验结果与其他常见的经验测量方法和三维有限元分析(FEA)进行了比较和验证。作为发现,发现测量的绕组交流电阻与负载水平相关。此外,将复杂的绕组损耗和铁芯损耗视为一个黑箱问题,本文提出了一个“总损耗图”作为一种工程解决方案,将磁性元件的测量损耗数据实际分发给最终用户,以实现快速准确的损耗估计/建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
期刊最新文献
IEEE Industry Applications Society Information Cooperative UAV Scheduling for Power Grid Deicing Using Fuzzy Learning and Evolutionary Optimization State-of-the-Art of CSR Design for Novel Applications Trend Front Cover IEEE Open Journal of Industry Applications Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1