Online Auto-Tuning Method in Field-Orientation-Controlled Induction Motor Driving Inertial Load

IF 7.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Industry Applications Pub Date : 2022-07-08 DOI:10.1109/OJIA.2022.3189343
Masaki Nagataki;Keiichiro Kondo;Osamu Yamazaki;Kazuaki Yuki;Yosuke Nakazawa
{"title":"Online Auto-Tuning Method in Field-Orientation-Controlled Induction Motor Driving Inertial Load","authors":"Masaki Nagataki;Keiichiro Kondo;Osamu Yamazaki;Kazuaki Yuki;Yosuke Nakazawa","doi":"10.1109/OJIA.2022.3189343","DOIUrl":null,"url":null,"abstract":"Feed-forward current control, which employs a single-pulse mode of inverters over a wide speed range, is applied in inertial load drive applications such as electric vehicles and electric railway vehicles. It is necessary to identify both primary and secondary motor parameters to realize sophisticated torque control in the feed-forward current control region, wherein the current controller cannot compensate for motor parameter errors. An online auto-tuning method that is based on the fundamental components of motor voltages during acceleration with an inertial load is proposed in this study. The convergence of the proposed auto-tuning is discussed, and a calculation method for correction gains is proposed to compensate for the motor parameters. The proposed method is verified via numerical simulation and experiments with a 750 W induction motor and an inertial load.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"3 ","pages":"125-140"},"PeriodicalIF":7.9000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/9666452/09823410.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9823410/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

Abstract

Feed-forward current control, which employs a single-pulse mode of inverters over a wide speed range, is applied in inertial load drive applications such as electric vehicles and electric railway vehicles. It is necessary to identify both primary and secondary motor parameters to realize sophisticated torque control in the feed-forward current control region, wherein the current controller cannot compensate for motor parameter errors. An online auto-tuning method that is based on the fundamental components of motor voltages during acceleration with an inertial load is proposed in this study. The convergence of the proposed auto-tuning is discussed, and a calculation method for correction gains is proposed to compensate for the motor parameters. The proposed method is verified via numerical simulation and experiments with a 750 W induction motor and an inertial load.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁场定向控制异步电机驱动惯性负载的在线自动调谐方法
前馈电流控制采用宽速度范围内的单脉冲逆变器模式,应用于电动汽车和电动铁路车辆等惯性负载驱动应用。有必要识别初级和次级电动机参数,以在前馈电流控制区域中实现复杂的转矩控制,其中电流控制器不能补偿电动机参数误差。本文提出了一种基于惯性负载加速过程中电机电压基本分量的在线自动调谐方法。讨论了所提出的自动调谐的收敛性,并提出了一种校正增益的计算方法来补偿电机参数。通过750W感应电机和惯性负载的数值模拟和实验验证了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.50
自引率
0.00%
发文量
0
期刊最新文献
IEEE Industry Applications Society Information Cooperative UAV Scheduling for Power Grid Deicing Using Fuzzy Learning and Evolutionary Optimization State-of-the-Art of CSR Design for Novel Applications Trend Front Cover IEEE Open Journal of Industry Applications Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1