Differential synapse density between Purkinje cell dendritic spine and parallel fiber varicosity in the rat cerebellum among the phylogenic lobules

Q3 Immunology and Microbiology Applied Microscopy Pub Date : 2020-02-27 DOI:10.1186/s42649-020-00027-6
Hyun-Wook Kim, Seung Hak Oh, Se Jeong Lee, Ji eun Na, Im Joo Rhyu
{"title":"Differential synapse density between Purkinje cell dendritic spine and parallel fiber varicosity in the rat cerebellum among the phylogenic lobules","authors":"Hyun-Wook Kim,&nbsp;Seung Hak Oh,&nbsp;Se Jeong Lee,&nbsp;Ji eun Na,&nbsp;Im Joo Rhyu","doi":"10.1186/s42649-020-00027-6","DOIUrl":null,"url":null,"abstract":"<p>The cerebellum is a region of the brain that plays an important role in motor control. It is classified phylogenetically into archicerebellum, paleocerebellum and neocerebellum. The Purkinje cells are lined in a row called Purkinje cell layer and it has a unique dendritic branches with many spines.</p><p>The previous study reported that there is a difference of synapse density according to the lobules based on large two-dimensional data. However, recent study with high voltage electron microscopy showed there was no differences in dendritic spine density of the Purkinje cell according to its phylogenetic lobule. We analyzed Purkinje cell density in the II, VI and X lobules by stereological modules and synaptic density was estimated by double disector based on Purkinje cell density in the molecular layer of each lobule.</p><p>The results showed that there was significant difference in the Purkinje cell density and synapse number according to their phylogenetic lobules. The number of Purkinje cell in a given volume was larger in the archicerebellum, but synapse density was higher in the neocerebellum.</p><p>These data suggest that cellular and synaptic organization of the Purkinje cell is different according to their phylogenetic background.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-020-00027-6","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microscopy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42649-020-00027-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 2

Abstract

The cerebellum is a region of the brain that plays an important role in motor control. It is classified phylogenetically into archicerebellum, paleocerebellum and neocerebellum. The Purkinje cells are lined in a row called Purkinje cell layer and it has a unique dendritic branches with many spines.

The previous study reported that there is a difference of synapse density according to the lobules based on large two-dimensional data. However, recent study with high voltage electron microscopy showed there was no differences in dendritic spine density of the Purkinje cell according to its phylogenetic lobule. We analyzed Purkinje cell density in the II, VI and X lobules by stereological modules and synaptic density was estimated by double disector based on Purkinje cell density in the molecular layer of each lobule.

The results showed that there was significant difference in the Purkinje cell density and synapse number according to their phylogenetic lobules. The number of Purkinje cell in a given volume was larger in the archicerebellum, but synapse density was higher in the neocerebellum.

These data suggest that cellular and synaptic organization of the Purkinje cell is different according to their phylogenetic background.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大鼠小脑系统发育小叶中浦肯野细胞树突棘与平行纤维静脉曲张突触密度的差异
小脑是大脑的一个区域,在运动控制中起着重要作用。在系统发育上分为原始小脑、古小脑和新小脑。浦肯野细胞排成一排,称为浦肯野细胞层,它有一个独特的树突分支,有许多刺。先前的研究基于大的二维数据报道了不同小叶的突触密度存在差异。然而,最近的高压电镜研究显示,根据其系统发育小叶,浦肯野细胞的树突棘密度没有差异。通过体视模分析ⅱ、六、十小叶的浦肯野细胞密度,并根据各小叶分子层浦肯野细胞密度用双方向仪估计突触密度。结果表明,不同的系统发育小叶在浦肯野细胞密度和突触数量上存在显著差异。在一定体积内,原小脑浦肯野细胞数量较多,而新小脑突触密度较高。这些数据表明浦肯野细胞的细胞和突触组织根据它们的系统发育背景是不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Microscopy
Applied Microscopy Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
3.40
自引率
0.00%
发文量
10
审稿时长
10 weeks
期刊介绍: Applied Microscopy is a peer-reviewed journal sponsored by the Korean Society of Microscopy. The journal covers all the interdisciplinary fields of technological developments in new microscopy methods and instrumentation and their applications to biological or materials science for determining structure and chemistry. ISSN: 22875123, 22874445.
期刊最新文献
Material analysis on semi-permanent makeup needles Analytical microscopy techniques using coaxial and oblique illuminations to detect thin glass particulates generated from glass vials for parenteral drug products Correction: Microstructural, mechanical, and electrochemical analysis of carbon doped AISI carbon steels In situ observation of catalyst nanoparticle sintering resistance on oxide supports via gas phase transmission electron microscopy Research reviews on myosin head interactions with F-actin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1