Mariam Saeed;Fernando Briz;Juan Manuel Guerrero;Igor Larrazabal;David Ortega;Victor Lopez;Juan Jose Valera
{"title":"Onboard Energy Storage Systems for Railway: Present and Trends","authors":"Mariam Saeed;Fernando Briz;Juan Manuel Guerrero;Igor Larrazabal;David Ortega;Victor Lopez;Juan Jose Valera","doi":"10.1109/OJIA.2023.3293059","DOIUrl":null,"url":null,"abstract":"Governments have recently been dedicating relevant funds to cope up with the inevitable transition to sustainable mobility aiming for a greener transportation sector. This scenario is backed up by the deteriorating global energy crisis, which is predicted to hasten the transition to sustainable energy. Focus has been given to railway systems being globally considered as a tractor project for promoting the use of green and renewable energy by helping build the required infrastructure. As a result, a high tendency for integrating onboard energy storage systems in trains is being observed worldwide. This article provides a detailed review of onboard railway systems with energy storage devices. In-service trains as well as relevant prototypes are presented, and their characteristics are analyzed. A comprehensive study of the traction system structure of these vehicles is introduced providing an overview of all the converter architectures used, categorized based on the type of onboard energy storage device on the train. The current situation of hydrogen fuel cells in railway systems is presented as well, highlighting consistent tendencies. This article also provides a glimpse into commercial battery and fuel cell products used on operating trains.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"4 ","pages":"238-259"},"PeriodicalIF":7.9000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782707/10008994/10174620.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10174620/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Governments have recently been dedicating relevant funds to cope up with the inevitable transition to sustainable mobility aiming for a greener transportation sector. This scenario is backed up by the deteriorating global energy crisis, which is predicted to hasten the transition to sustainable energy. Focus has been given to railway systems being globally considered as a tractor project for promoting the use of green and renewable energy by helping build the required infrastructure. As a result, a high tendency for integrating onboard energy storage systems in trains is being observed worldwide. This article provides a detailed review of onboard railway systems with energy storage devices. In-service trains as well as relevant prototypes are presented, and their characteristics are analyzed. A comprehensive study of the traction system structure of these vehicles is introduced providing an overview of all the converter architectures used, categorized based on the type of onboard energy storage device on the train. The current situation of hydrogen fuel cells in railway systems is presented as well, highlighting consistent tendencies. This article also provides a glimpse into commercial battery and fuel cell products used on operating trains.