Distributed Data-Driven Control of Network Systems

Federico Celi;Giacomo Baggio;Fabio Pasqualetti
{"title":"Distributed Data-Driven Control of Network Systems","authors":"Federico Celi;Giacomo Baggio;Fabio Pasqualetti","doi":"10.1109/OJCSYS.2023.3259228","DOIUrl":null,"url":null,"abstract":"Imperfect models lead to imperfect controllers and deriving accurate models from first principles or system identification is especially challenging in networked systems. Instead, data can be used to directly compute controllers, without requiring any system identification or modeling. In this paper we propose a strategy to directly learn control actions when data from past system trajectories is distributed among multiple agents in a network. The approach we develop provably converges to a suboptimal solution in a finite number of steps, bounded by the diameter of the network, and with a sub-optimality gap that can be characterized as a function of data, and that can be made arbitrarily small. We further characterize the robustness properties of our approach and give provable guarantees on its performance when data are affected by noise or by a class of attacks.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"2 ","pages":"93-107"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552933/9973428/10076813.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10076813/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Imperfect models lead to imperfect controllers and deriving accurate models from first principles or system identification is especially challenging in networked systems. Instead, data can be used to directly compute controllers, without requiring any system identification or modeling. In this paper we propose a strategy to directly learn control actions when data from past system trajectories is distributed among multiple agents in a network. The approach we develop provably converges to a suboptimal solution in a finite number of steps, bounded by the diameter of the network, and with a sub-optimality gap that can be characterized as a function of data, and that can be made arbitrarily small. We further characterize the robustness properties of our approach and give provable guarantees on its performance when data are affected by noise or by a class of attacks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络系统的分布式数据驱动控制
不完美的模型会导致不完美的控制器,在网络系统中,从第一性原理或系统识别推导准确的模型尤其具有挑战性。相反,数据可以用于直接计算控制器,而不需要任何系统识别或建模。在本文中,当来自过去系统轨迹的数据分布在网络中的多个代理之间时,我们提出了一种直接学习控制动作的策略。我们开发的方法在有限的步骤中可证明地收敛于次优解,以网络的直径为界,并且具有次优间隙,该次优间隙可以表征为数据的函数,并且可以变得任意小。我们进一步描述了我们的方法的鲁棒性,并在数据受到噪声或一类攻击影响时对其性能给出了可证明的保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum to “Learning to Boost the Performance of Stable Nonlinear Systems” Generalizing Robust Control Barrier Functions From a Controller Design Perspective 2024 Index IEEE Open Journal of Control Systems Vol. 3 Front Cover Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1