Jochen Moll;Teresa Slanina;Jonathan Stindl;Thomas Maetz;Duy Hai Nguyen;Viktor Krozer
{"title":"Temperature-Induced Contrast Enhancement for Radar-Based Breast Tumor Detection at K-Band Using Tissue Mimicking Phantoms","authors":"Jochen Moll;Teresa Slanina;Jonathan Stindl;Thomas Maetz;Duy Hai Nguyen;Viktor Krozer","doi":"10.1109/JERM.2023.3265510","DOIUrl":null,"url":null,"abstract":"Conventional approaches for microwave breast tumor detection are limited by the imaging resolution due to the low operating frequency. The objective of this work is to provide a proof of concept for radar-based detection of breast tumors in K-band using the temperature-dependent permittivity of the tissue for contrast enhancement. The innovation of this work is given by i) investigating higher microwave frequencies for breast cancer diagnostics and improved resolution; ii) exploiting variations in tissue temperature as a non-invasive approach for contrast-induced radar imaging eliminating the need for contrast agents such as nanoparticles; iii) using a well-defined setup with the breast compressed similar to mammography; iv) eliminating the need for coupling liquid through the usage of ultra-wideband bow-tie antennas operating from 16.55 to 40 GHz for a reflection coefficient lower than −10 dB; v) validating the experimental findings through numerical modelling. The experimental setup in this work consists of a single-pixel transmission setup with the antennas placed in a 3D printed container. Two different tissue mimicking phantoms have been studied that both model the temperature-dependent permittivity of biological tissue. The first phantom represents homogeneous fatty tissue properties and the second phantom simulates fatty tissue with a tumor inclusion. A uniform phantom warming is realized through a water bath combined with a continuous monitoring of the phantoms temperature. We show that a homogeneous phantom without tumor can be distinguished from a heterogeneous phantom with tumor in the temperature range of 28 \n<inline-formula><tex-math>$^\\circ$</tex-math></inline-formula>\nC to 38 \n<inline-formula><tex-math>$^\\circ$</tex-math></inline-formula>\nC.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"7 3","pages":"251-257"},"PeriodicalIF":3.0000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10103901/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional approaches for microwave breast tumor detection are limited by the imaging resolution due to the low operating frequency. The objective of this work is to provide a proof of concept for radar-based detection of breast tumors in K-band using the temperature-dependent permittivity of the tissue for contrast enhancement. The innovation of this work is given by i) investigating higher microwave frequencies for breast cancer diagnostics and improved resolution; ii) exploiting variations in tissue temperature as a non-invasive approach for contrast-induced radar imaging eliminating the need for contrast agents such as nanoparticles; iii) using a well-defined setup with the breast compressed similar to mammography; iv) eliminating the need for coupling liquid through the usage of ultra-wideband bow-tie antennas operating from 16.55 to 40 GHz for a reflection coefficient lower than −10 dB; v) validating the experimental findings through numerical modelling. The experimental setup in this work consists of a single-pixel transmission setup with the antennas placed in a 3D printed container. Two different tissue mimicking phantoms have been studied that both model the temperature-dependent permittivity of biological tissue. The first phantom represents homogeneous fatty tissue properties and the second phantom simulates fatty tissue with a tumor inclusion. A uniform phantom warming is realized through a water bath combined with a continuous monitoring of the phantoms temperature. We show that a homogeneous phantom without tumor can be distinguished from a heterogeneous phantom with tumor in the temperature range of 28
$^\circ$
C to 38
$^\circ$
C.