Area-Averaged Transmitted and Absorbed Power Density on a Realistic Ear Model

IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2022-12-20 DOI:10.1109/JERM.2022.3225380
Ante Lojić Kapetanović;Giulia Sacco;Dragan Poljak;Maxim Zhadobov
{"title":"Area-Averaged Transmitted and Absorbed Power Density on a Realistic Ear Model","authors":"Ante Lojić Kapetanović;Giulia Sacco;Dragan Poljak;Maxim Zhadobov","doi":"10.1109/JERM.2022.3225380","DOIUrl":null,"url":null,"abstract":"At millimeter waves (MMW), the current state of research in computational dosimetry is mainly relying on flat-surface tissue-equivalent models to simplify the exposure assessment by disregarding geometrical irregularities characteristic of conformal surfaces on realistic models. However, this can lead to errors in estimation of dosimetric quantities on non-planar body parts with local curvature radii comparable to the wavelength of the incident field. In this study, we address this problem by developing an averaging technique for the assessment of the absorbed power density (\n<inline-formula><tex-math>$S_{\\text{ab}}$</tex-math></inline-formula>\n) on the anatomically-accurate electromagnetic (EM) model of the human ear. The dosimetric analysis is performed for the plane-wave exposure at 26 and 60 GHz, and the accuracy of the proposed method is verified by using two commercial EM software. Furthermore, we compare the two definitions of \n<inline-formula><tex-math>$S_{\\text{ab}}$</tex-math></inline-formula>\n provided in the international guidelines and standards for limiting exposure to EM fields above 6 GHz. Results show marginal relative differences between the obtained values from the two different definitions (within about 6 %) in all considered scenarios. On the other hand, in comparison to flat models, the spatial maximum \n<inline-formula><tex-math>$S_{\\text{ab}}$</tex-math></inline-formula>\n on the ear is up to about 20 % larger regardless of definition. These findings demonstrate a promising potential of the proposed method for the assessment of \n<inline-formula><tex-math>$S_{\\text{ab}}$</tex-math></inline-formula>\n on surfaces of anatomical models at frequencies upcoming for the 5th generation (5G) wireless networks and beyond","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9993744/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

At millimeter waves (MMW), the current state of research in computational dosimetry is mainly relying on flat-surface tissue-equivalent models to simplify the exposure assessment by disregarding geometrical irregularities characteristic of conformal surfaces on realistic models. However, this can lead to errors in estimation of dosimetric quantities on non-planar body parts with local curvature radii comparable to the wavelength of the incident field. In this study, we address this problem by developing an averaging technique for the assessment of the absorbed power density ( $S_{\text{ab}}$ ) on the anatomically-accurate electromagnetic (EM) model of the human ear. The dosimetric analysis is performed for the plane-wave exposure at 26 and 60 GHz, and the accuracy of the proposed method is verified by using two commercial EM software. Furthermore, we compare the two definitions of $S_{\text{ab}}$ provided in the international guidelines and standards for limiting exposure to EM fields above 6 GHz. Results show marginal relative differences between the obtained values from the two different definitions (within about 6 %) in all considered scenarios. On the other hand, in comparison to flat models, the spatial maximum $S_{\text{ab}}$ on the ear is up to about 20 % larger regardless of definition. These findings demonstrate a promising potential of the proposed method for the assessment of $S_{\text{ab}}$ on surfaces of anatomical models at frequencies upcoming for the 5th generation (5G) wireless networks and beyond
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
真实耳朵模型上的面积平均发射和吸收功率密度
在毫米波(MMW)中,计算剂量测定的研究现状主要依赖于平面组织等效模型,通过忽略现实模型上共形表面的几何不规则性特征来简化暴露评估。然而,这可能导致局部曲率半径与入射场波长相当的非平面身体部位的剂量测量量的估计误差。在这项研究中,我们通过开发一种平均技术来解决这个问题,该技术用于评估人耳的解剖学精确电磁(EM)模型上的吸收功率密度($S_text{ab}}$)。对26和60GHz的平面波照射进行了剂量分析,并使用两个商业EM软件验证了所提出方法的准确性。此外,我们比较了限制暴露于6 GHz以上EM场的国际指南和标准中提供的$S_{\text{ab}}$的两个定义。结果显示,从两个不同的定义中获得的值之间的边际相对差异(在大约6 %) 在所有考虑的场景中。另一方面,与平面模型相比,耳朵上的空间最大值$S_text{ab}}$高达约20 % 无论定义如何都更大。这些发现证明了所提出的方法在第五代(5G)无线网络及其后的频率下评估解剖模型表面上的$S_
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
期刊最新文献
Front Cover Table of Contents IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information Models of Melanoma Growth for Assessment of Microwave-Based Diagnostic Tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1