Noninvasive COVID-19 Screening Using Deep-Learning-Based Multilevel Fusion Model With an Attention Mechanism

M. Shamim Hossain;Mohammad Shorfuzzaman
{"title":"Noninvasive COVID-19 Screening Using Deep-Learning-Based Multilevel Fusion Model With an Attention Mechanism","authors":"M. Shamim Hossain;Mohammad Shorfuzzaman","doi":"10.1109/OJIM.2023.3303944","DOIUrl":null,"url":null,"abstract":"The current pandemic has necessitated rapid and automatic detection of coronavirus disease (COVID-19) infections. Various artificial intelligence functionalities coupled with biomedical images can be utilized to efficiently detect these infections and recommend a prompt response (curative intervention) to limit the virus’s spread. In particular, biomedical imaging could help to visualize the internal organs of the human body and disorders that affect them. One of them is chest X-rays (CXRs) which has widely been used for preventive medicine or disease screening. However, when it comes to detecting COVID-19 from CXR images, most of the approaches rely on standard image classification algorithms, which have limitations with low identification accuracy and improper extraction of key features. As a result, a convolutional neural network (CNN)-based fusion network has been developed for automated COVID-19 screening in this study. First, using attention networks and multiple fine-tuned CNN models, we extract key features that are resistant to overfitting. We then employ a locally connected layer to create a weighted combination of these models for final COVID-19 detection. Using a publicly available dataset of CXR images from healthy subjects as well as COVID-19 and pneumonia cases, we evaluated the predictive capabilities of our proposed model. Test results demonstrate that the proposed fusion model performs favorably compared to individual CNN models.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"2 ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552935/10025401/10226595.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Instrumentation and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10226595/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The current pandemic has necessitated rapid and automatic detection of coronavirus disease (COVID-19) infections. Various artificial intelligence functionalities coupled with biomedical images can be utilized to efficiently detect these infections and recommend a prompt response (curative intervention) to limit the virus’s spread. In particular, biomedical imaging could help to visualize the internal organs of the human body and disorders that affect them. One of them is chest X-rays (CXRs) which has widely been used for preventive medicine or disease screening. However, when it comes to detecting COVID-19 from CXR images, most of the approaches rely on standard image classification algorithms, which have limitations with low identification accuracy and improper extraction of key features. As a result, a convolutional neural network (CNN)-based fusion network has been developed for automated COVID-19 screening in this study. First, using attention networks and multiple fine-tuned CNN models, we extract key features that are resistant to overfitting. We then employ a locally connected layer to create a weighted combination of these models for final COVID-19 detection. Using a publicly available dataset of CXR images from healthy subjects as well as COVID-19 and pneumonia cases, we evaluated the predictive capabilities of our proposed model. Test results demonstrate that the proposed fusion model performs favorably compared to individual CNN models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的具有注意力机制的多级融合模型在新冠肺炎无创筛查中的应用
当前的大流行需要对冠状病毒疾病(新冠肺炎)感染进行快速和自动检测。可以利用各种人工智能功能与生物医学图像相结合来有效地检测这些感染,并建议及时应对(治疗干预)以限制病毒的传播。特别是,生物医学成像可以帮助可视化人体的内部器官和影响它们的疾病。其中之一是胸部X光片(CXR),它已被广泛用于预防医学或疾病筛查。然而,当从CXR图像中检测新冠肺炎时,大多数方法依赖于标准的图像分类算法,这些算法具有识别精度低和关键特征提取不当的局限性。因此,本研究开发了一种基于卷积神经网络(CNN)的融合网络,用于新冠肺炎的自动筛查。首先,使用注意力网络和多个微调的CNN模型,我们提取了抗过拟合的关键特征。然后,我们使用局部连接层来创建这些模型的加权组合,用于最终的新冠肺炎检测。使用健康受试者以及新冠肺炎和肺炎病例的CXR图像的公开数据集,我们评估了我们提出的模型的预测能力。测试结果表明,与单个CNN模型相比,所提出的融合模型表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatiotemporal Variance Image Reconstruction for Thermographic Inspections Fault Detection in an Electro-Hydrostatic Actuator Using Polyscale Complexity Measures and Bayesian Classification Baseline-Free Damage Imaging for Structural Health Monitoring of Composite Lap Joint Using Ultrasonic-Guided Waves Spiking Neural Networks for Energy-Efficient Acoustic Emission-Based Monitoring IMU Optimal Rotation Rates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1