Christian Laurano;Paolo Attilio Pegoraro;Carlo Sitzia;Antonio Vincenzo Solinas;Sara Sulis;Sergio Toscani
{"title":"Refined Modeling and Compensation of Current Transformers Behavior for Line Parameters Estimation Based on Synchronized Measurements","authors":"Christian Laurano;Paolo Attilio Pegoraro;Carlo Sitzia;Antonio Vincenzo Solinas;Sara Sulis;Sergio Toscani","doi":"10.1109/OJIM.2023.3250280","DOIUrl":null,"url":null,"abstract":"Nowadays, in modern management and control applications, line parameters need to be known more accurately than in the past to achieve a reliable operation of the distribution grids. Phasor measurement units (PMUs) may improve line parameter estimation processes, but the accuracy of the result is affected by all the elements of the PMU-based measurement chain, in particular by the instrument transformers. Current transformers (CTs) are nonlinear and, therefore, their behavior is not easily described: their models cannot be straightforwardly included in the estimation problem. In this regard, this article refines modeling and compensation of CT systematic errors in line parameter estimation processes, based on different methods to describe the transformer behavior under various operating conditions. As the main result, the systematic errors of CTs are remarkably identified and mitigated. Moreover, the estimation of shunt susceptance values is significantly improved.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"2 ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552935/10025401/10056410.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Instrumentation and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10056410/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, in modern management and control applications, line parameters need to be known more accurately than in the past to achieve a reliable operation of the distribution grids. Phasor measurement units (PMUs) may improve line parameter estimation processes, but the accuracy of the result is affected by all the elements of the PMU-based measurement chain, in particular by the instrument transformers. Current transformers (CTs) are nonlinear and, therefore, their behavior is not easily described: their models cannot be straightforwardly included in the estimation problem. In this regard, this article refines modeling and compensation of CT systematic errors in line parameter estimation processes, based on different methods to describe the transformer behavior under various operating conditions. As the main result, the systematic errors of CTs are remarkably identified and mitigated. Moreover, the estimation of shunt susceptance values is significantly improved.