A New Approach for Solar Photovoltaic Parameter Extraction Using Metaheuristic Algorithms From Manufacturer Datasheet

Bikshan Ghosh;Sharmistha Mandal
{"title":"A New Approach for Solar Photovoltaic Parameter Extraction Using Metaheuristic Algorithms From Manufacturer Datasheet","authors":"Bikshan Ghosh;Sharmistha Mandal","doi":"10.1109/OJIM.2023.3318678","DOIUrl":null,"url":null,"abstract":"Estimating the parameters of solar photovoltaic (PV) panels is crucial for effectively managing operations in solar-based microgrids. Various techniques have been developed for this purpose, and one accurate approach is solar cell modeling using metaheuristic algorithms from current–voltage (\n<inline-formula> <tex-math>${I}$ </tex-math></inline-formula>\n–\n<inline-formula> <tex-math>${V}$ </tex-math></inline-formula>\n) data of the PV panel. However, this method relies on experimental datasets, which may not be readily available for most industrial PV panels. Hence, this research proposes a new technique for estimating the parameters of different types of PV modules using only manufacturer datasheets. Additionally, three metaheuristic optimization techniques, namely, particle swarm optimization (PSO), artificial bee colony (ABC) optimization, and Harris Hawks optimization (HHO), are investigated for solving this problem. The obtained results using these optimizers indicate that PSO mostly outperforms other algorithms, in terms of accuracy, while demonstrating faster computation. The proposed method is evaluated for three different PV units. Under 1000W/m2 of irradiance and a specified temperature, the method has been validated with available experimental datasets. Furthermore, a comparative analysis with some other existing methods in the literature reveals the model’s competitiveness despite not relying on experimental datasets. Also, an uncertainty analysis for the extracted parameters has shown that the obtained results are reliable enough to predict the actual dynamics of PV units. This study holds significance for other research on the basis of PV panel parameters, managing commercial PV power plant operation with with maximum power point tracking controller, etc.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"2 ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552935/10025401/10261504.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Instrumentation and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10261504/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating the parameters of solar photovoltaic (PV) panels is crucial for effectively managing operations in solar-based microgrids. Various techniques have been developed for this purpose, and one accurate approach is solar cell modeling using metaheuristic algorithms from current–voltage ( ${I}$ ${V}$ ) data of the PV panel. However, this method relies on experimental datasets, which may not be readily available for most industrial PV panels. Hence, this research proposes a new technique for estimating the parameters of different types of PV modules using only manufacturer datasheets. Additionally, three metaheuristic optimization techniques, namely, particle swarm optimization (PSO), artificial bee colony (ABC) optimization, and Harris Hawks optimization (HHO), are investigated for solving this problem. The obtained results using these optimizers indicate that PSO mostly outperforms other algorithms, in terms of accuracy, while demonstrating faster computation. The proposed method is evaluated for three different PV units. Under 1000W/m2 of irradiance and a specified temperature, the method has been validated with available experimental datasets. Furthermore, a comparative analysis with some other existing methods in the literature reveals the model’s competitiveness despite not relying on experimental datasets. Also, an uncertainty analysis for the extracted parameters has shown that the obtained results are reliable enough to predict the actual dynamics of PV units. This study holds significance for other research on the basis of PV panel parameters, managing commercial PV power plant operation with with maximum power point tracking controller, etc.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于制造商数据表的元启发式算法提取太阳能光伏参数的新方法
估计太阳能光伏(PV)面板的参数对于有效管理太阳能微电网的运行至关重要。为此,已经开发了各种技术,其中一种准确的方法是使用元启发式算法对光伏电池板的电流-电压(${I}$–${V}$)数据进行太阳能电池建模。然而,这种方法依赖于实验数据集,而大多数工业光伏电池板可能无法获得这些数据集。因此,本研究提出了一种仅使用制造商数据表来估计不同类型光伏组件参数的新技术。此外,还研究了三种元启发式优化技术,即粒子群优化(PSO)、人工蜂群优化(ABC)和哈里斯-霍克斯优化(HHO)来解决这个问题。使用这些优化器获得的结果表明,PSO在精度方面大多优于其他算法,同时显示出更快的计算速度。针对三种不同的光伏机组对所提出的方法进行了评估。在1000W/m2的辐照度和特定温度下,该方法已通过可用的实验数据集进行了验证。此外,与文献中其他一些现有方法的比较分析揭示了该模型的竞争力,尽管它不依赖于实验数据集。此外,对提取参数的不确定性分析表明,所获得的结果足够可靠,可以预测光伏机组的实际动态。该研究对其他基于光伏板参数的研究、利用最大功率点跟踪控制器管理商业光伏电站运行等具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatiotemporal Variance Image Reconstruction for Thermographic Inspections Fault Detection in an Electro-Hydrostatic Actuator Using Polyscale Complexity Measures and Bayesian Classification Baseline-Free Damage Imaging for Structural Health Monitoring of Composite Lap Joint Using Ultrasonic-Guided Waves Spiking Neural Networks for Energy-Efficient Acoustic Emission-Based Monitoring IMU Optimal Rotation Rates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1