Enhanced Goldstein Filter for Interferometric Phase Denoising Using 2-D Variational Mode Decomposition

Rahul Dasharath Gavas;Soumya Kanti Ghosh;Arpan Pal
{"title":"Enhanced Goldstein Filter for Interferometric Phase Denoising Using 2-D Variational Mode Decomposition","authors":"Rahul Dasharath Gavas;Soumya Kanti Ghosh;Arpan Pal","doi":"10.1109/OJIM.2023.3303948","DOIUrl":null,"url":null,"abstract":"Denoising of interferograms is a vital step in the processing of synthetic aperture radar (InSAR) data. The primary goal is to filter the noise to the extent possible while retaining the fringes of the interferograms. Among the widely available classes of filters, the frequency-domain filters are still being used, owing to their robustness and generalizability to varying phase noise characteristics. This article deals with an enhancement to the well-known frequency-domain filter, i.e., the Goldstein filter, which is basically a phase filtering algorithm for interferometric products. The proposed extension to the Goldstein filter deals with deriving the tuning parameter based on the spatial frequency modes. This is achieved by using the mode-level characteristics rendered by the 2-D version of variational mode decomposition (2D-VMD) on the interferograms under test. The results of simulation and real interferogram data show that the proposed approach reduces the noise levels while minimizing the loss of signal.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"2 ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552935/10025401/10214398.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Instrumentation and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10214398/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Denoising of interferograms is a vital step in the processing of synthetic aperture radar (InSAR) data. The primary goal is to filter the noise to the extent possible while retaining the fringes of the interferograms. Among the widely available classes of filters, the frequency-domain filters are still being used, owing to their robustness and generalizability to varying phase noise characteristics. This article deals with an enhancement to the well-known frequency-domain filter, i.e., the Goldstein filter, which is basically a phase filtering algorithm for interferometric products. The proposed extension to the Goldstein filter deals with deriving the tuning parameter based on the spatial frequency modes. This is achieved by using the mode-level characteristics rendered by the 2-D version of variational mode decomposition (2D-VMD) on the interferograms under test. The results of simulation and real interferogram data show that the proposed approach reduces the noise levels while minimizing the loss of signal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二维变分模分解的干涉相位去噪增强Goldstein滤波器
干涉图的去噪是合成孔径雷达(InSAR)数据处理的重要步骤。主要目标是在保留干涉图条纹的同时,尽可能地过滤噪声。在广泛可用的滤波器类别中,频域滤波器仍在使用,因为它们对不同相位噪声特性具有鲁棒性和可推广性。本文讨论了对众所周知的频域滤波器的增强,即Goldstein滤波器,它基本上是干涉产品的相位滤波算法。对Goldstein滤波器提出的扩展处理基于空间频率模式导出调谐参数。这是通过使用变分模式分解(2D-VMD)的二维版本在被测干涉图上呈现的模式级特性来实现的。仿真结果和实际干涉图数据表明,该方法在降低噪声的同时最大限度地减少了信号损耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatiotemporal Variance Image Reconstruction for Thermographic Inspections Fault Detection in an Electro-Hydrostatic Actuator Using Polyscale Complexity Measures and Bayesian Classification Baseline-Free Damage Imaging for Structural Health Monitoring of Composite Lap Joint Using Ultrasonic-Guided Waves Spiking Neural Networks for Energy-Efficient Acoustic Emission-Based Monitoring IMU Optimal Rotation Rates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1