{"title":"Nonlinear Constitutive Soil Models for the Soil–Structure Interaction Modeling Issues with Emphasis on Shallow Tunnels: A Review","authors":"Oğuzhan Çetindemir","doi":"10.1007/s13369-023-08140-w","DOIUrl":null,"url":null,"abstract":"<div><p>With the growing recognition of the significance of accurate soil–structure interaction (SSI) modeling in geotechnical earthquake engineering, particularly for shallow tunnels in soft soils, a comprehensive understanding of soil nonlinearity (due to the variable shear strain level) becomes critical. In this regard, this work aims to identify the capabilities of several nonlinear constitutive soil models under various loading conditions and how they can be effectively employed using the finite difference method in a three-dimensional context to implement full dynamic motion equations. Therefore, this review paper encompasses an in-depth exploration of nonlinear constitutive soil models and their utility under varying loading conditions, with a specific focus on SSI in shallow tunnels. This research also provides strategic recommendations and limitations addressing critical modeling issues in general and related to model dimensions, loading, and boundary conditions, thus offering valuable guidance for future research and applications in this field. The investigation revealed that certain models are more effective under specific loading conditions, providing new insights into how best to apply these models for accurate SSI modeling. This enhanced understanding of the capabilities of different soil models under various conditions offers invaluable guidance for future research. It also has significant implications for the practical application in geotechnical earthquake engineering, especially concerning the safety and resilience of shallow tunnels in seismic-prone regions.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"48 10","pages":"12657 - 12691"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-023-08140-w","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
With the growing recognition of the significance of accurate soil–structure interaction (SSI) modeling in geotechnical earthquake engineering, particularly for shallow tunnels in soft soils, a comprehensive understanding of soil nonlinearity (due to the variable shear strain level) becomes critical. In this regard, this work aims to identify the capabilities of several nonlinear constitutive soil models under various loading conditions and how they can be effectively employed using the finite difference method in a three-dimensional context to implement full dynamic motion equations. Therefore, this review paper encompasses an in-depth exploration of nonlinear constitutive soil models and their utility under varying loading conditions, with a specific focus on SSI in shallow tunnels. This research also provides strategic recommendations and limitations addressing critical modeling issues in general and related to model dimensions, loading, and boundary conditions, thus offering valuable guidance for future research and applications in this field. The investigation revealed that certain models are more effective under specific loading conditions, providing new insights into how best to apply these models for accurate SSI modeling. This enhanced understanding of the capabilities of different soil models under various conditions offers invaluable guidance for future research. It also has significant implications for the practical application in geotechnical earthquake engineering, especially concerning the safety and resilience of shallow tunnels in seismic-prone regions.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.