Emission inventory of air pollutants from residential coal combustion over the Beijing-Tianjin-Hebei Region in 2020

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Air Quality Atmosphere and Health Pub Date : 2023-07-05 DOI:10.1007/s11869-023-01375-4
Ruting Zhang, Chuanmin Chen, Songtao Liu, Huacheng Wu, Weiqing Zhou, Peng Li
{"title":"Emission inventory of air pollutants from residential coal combustion over the Beijing-Tianjin-Hebei Region in 2020","authors":"Ruting Zhang,&nbsp;Chuanmin Chen,&nbsp;Songtao Liu,&nbsp;Huacheng Wu,&nbsp;Weiqing Zhou,&nbsp;Peng Li","doi":"10.1007/s11869-023-01375-4","DOIUrl":null,"url":null,"abstract":"<div><p>To investigate the atmospheric pollutant emission from residential coal combustion (RCC) in BTH region in 2020, based on the bottom-up methodology, a high spatial and temporal resolution air pollutant emission inventory was established. The results showed that the emissions of PM<sub>10</sub>, PM<sub>2.5</sub>, BC, OC, CO, NO<sub><i>x</i></sub>, SO<sub>2</sub>, and VOCs in BTH region in 2020 were 19.58, 15.67, 2.98, 8.33, 296.96, 3.51, 36.67, and 5.87 million tons, respectively. Chengde contributed the most PM<sub>2.5</sub>, BC, OC, and VOCs in BTH region, accounted for 11.48%, 13.71%, 11.52%, and 12.72%, respectively. While Shijiazhuang contributed the most PM<sub>10</sub>, CO, NO<sub><i>x</i></sub>, and SO<sub>2</sub> in BTH region, accounted for 11.55%, 11.60%, 11.55%, and 12.10%, respectively. The spatial distribution characteristics of pollutants showed that high emissions concentrated in northern, eastern, and southern areas of BTH region. Based on the time distribution factor obtained from the long-term follow-up survey data of RCC of households in BTH region, the annual emissions of different cities were allocated according to the temporal resolution of monthly, daily, and hourly. It was found that for each pollutant, the highest emissions appeared in January; the higher emissions occurred in mid-December, early January, and mid-February; and the peak emission appeared at 8:00, 11:00, 18:00, and 21:00. Furthermore, the uncertainty analysis of the emission inventory was carried out by using the Monte Carlo method. This study provides a more high temporal and spatial resolution emission inventory of RCC for air quality model, which can accurately simulate regional pollutant emission scenarios.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11869-023-01375-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-023-01375-4","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate the atmospheric pollutant emission from residential coal combustion (RCC) in BTH region in 2020, based on the bottom-up methodology, a high spatial and temporal resolution air pollutant emission inventory was established. The results showed that the emissions of PM10, PM2.5, BC, OC, CO, NOx, SO2, and VOCs in BTH region in 2020 were 19.58, 15.67, 2.98, 8.33, 296.96, 3.51, 36.67, and 5.87 million tons, respectively. Chengde contributed the most PM2.5, BC, OC, and VOCs in BTH region, accounted for 11.48%, 13.71%, 11.52%, and 12.72%, respectively. While Shijiazhuang contributed the most PM10, CO, NOx, and SO2 in BTH region, accounted for 11.55%, 11.60%, 11.55%, and 12.10%, respectively. The spatial distribution characteristics of pollutants showed that high emissions concentrated in northern, eastern, and southern areas of BTH region. Based on the time distribution factor obtained from the long-term follow-up survey data of RCC of households in BTH region, the annual emissions of different cities were allocated according to the temporal resolution of monthly, daily, and hourly. It was found that for each pollutant, the highest emissions appeared in January; the higher emissions occurred in mid-December, early January, and mid-February; and the peak emission appeared at 8:00, 11:00, 18:00, and 21:00. Furthermore, the uncertainty analysis of the emission inventory was carried out by using the Monte Carlo method. This study provides a more high temporal and spatial resolution emission inventory of RCC for air quality model, which can accurately simulate regional pollutant emission scenarios.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
京津冀地区2020年居民燃煤大气污染物排放清单
为了调查BTH地区2020年居民燃煤大气污染物排放情况,基于自下而上的方法,建立了高时空分辨率的大气污染物排放清单。结果显示,2020年BTH地区PM10、PM2.5、BC、OC、CO、NOx、SO2和VOCs的排放量分别为19.58、15.67、2.98、8.33、296.96、351、3667和587万吨。承德地区PM2.5、BC、OC和VOCs的贡献率最高,分别为11.48%、13.71%、11.52%和12.72%。而石家庄对BTH地区PM10、CO、NOx和SO2的贡献最大,分别占11.55%、11.60%、11.55%和12.10%。污染物的空间分布特征表明,高排放集中在BTH区域的北部、东部和南部。基于BTH地区家庭RCC长期跟踪调查数据获得的时间分布因子,按照月、日、小时的时间分辨率对不同城市的年排放量进行分配。研究发现,对于每种污染物,1月份的排放量最高;较高的排放发生在12月中旬、1月初和2月中旬;峰值发射出现在8:00、11:00、18:00和21:00。此外,采用蒙特卡罗方法对排放清单进行了不确定性分析。本研究为空气质量模型提供了一个更高时空分辨率的RCC排放清单,可以准确模拟区域污染物排放情景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Air Quality Atmosphere and Health
Air Quality Atmosphere and Health ENVIRONMENTAL SCIENCES-
CiteScore
8.80
自引率
2.00%
发文量
146
审稿时长
>12 weeks
期刊介绍: Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health. It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes. International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals. Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements. This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.
期刊最新文献
Reduction of 2,6-dimethoxyphenol odor emitted from Ribbed Smoked Sheet by Co(II)-salen complex The regulation effect of urban green space on air particulate matter concentration under different matrices in Xi'an city Moss biomonitoring of air quality linked with trace metals pollution around a metallurgical complex in Elbasan, Albania An analytical comparison of two versions (US EPA and BIS) of pararosaniline method used for monitoring of ambient SO2 Long term trends in global air pollution potential and its application to ventilation corridors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1