The sparse factorization of nonnegative matrix in distributed network

Xinhong Meng, Fusheng Xu, Hailiang Ye, Feilong Cao
{"title":"The sparse factorization of nonnegative matrix in distributed network","authors":"Xinhong Meng,&nbsp;Fusheng Xu,&nbsp;Hailiang Ye,&nbsp;Feilong Cao","doi":"10.1007/s43674-021-00009-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes some distributed algorithms to solve the sparse factorization of a large-scale nonnegative matrix (SFNM). These distributed algorithms combine some merits of classical nonnegative matrix factorization (NMF) algorithms and distributed learning network. Our proposed algorithms utilize the whole nodes of network to solve a factorization problem of a nonnegative matrix; the fact is that per node copes with a part of the matrix, then uses the distributed average consensus (DAC) algorithm or regional nodes to communicate the parameters gained by each node to ensure them to be convergent or easy to calculation. Different from other existing distributed learning algorithms of NMF, which always need high-qualified hardware or complicated computing methods, our algorithms make a full use of the simplicity of traditional NMF algorithms and distributed thoughts. Some artificial datasets are used for testing these algorithms, and the experimental results with comparisons show that the proposed algorithms perform favorably in terms of accuracy and efficiency.</p></div>","PeriodicalId":72089,"journal":{"name":"Advances in computational intelligence","volume":"1 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computational intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43674-021-00009-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes some distributed algorithms to solve the sparse factorization of a large-scale nonnegative matrix (SFNM). These distributed algorithms combine some merits of classical nonnegative matrix factorization (NMF) algorithms and distributed learning network. Our proposed algorithms utilize the whole nodes of network to solve a factorization problem of a nonnegative matrix; the fact is that per node copes with a part of the matrix, then uses the distributed average consensus (DAC) algorithm or regional nodes to communicate the parameters gained by each node to ensure them to be convergent or easy to calculation. Different from other existing distributed learning algorithms of NMF, which always need high-qualified hardware or complicated computing methods, our algorithms make a full use of the simplicity of traditional NMF algorithms and distributed thoughts. Some artificial datasets are used for testing these algorithms, and the experimental results with comparisons show that the proposed algorithms perform favorably in terms of accuracy and efficiency.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式网络中非负矩阵的稀疏因子分解
本文提出了一些求解大规模非负矩阵稀疏因子分解的分布式算法。这些分布式算法结合了经典非负矩阵分解算法和分布式学习网络的一些优点。我们提出的算法利用网络的整个节点来解决非负矩阵的因子分解问题;事实上,每个节点处理矩阵的一部分,然后使用分布式平均一致性(DAC)算法或区域节点来传达每个节点获得的参数,以确保它们收敛或易于计算。不同于现有的NMF分布式学习算法,它们总是需要高质量的硬件或复杂的计算方法,我们的算法充分利用了传统NMF算法的简单性和分布式思想。使用一些人工数据集对这些算法进行了测试,实验结果与比较表明,所提出的算法在准确性和效率方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-linear machine learning with sample perturbation augments leukemia relapse prognostics from single-cell proteomics measurements ARBP: antibiotic-resistant bacteria propagation bio-inspired algorithm and its performance on benchmark functions Detection and classification of diabetic retinopathy based on ensemble learning Office real estate price index forecasts through Gaussian process regressions for ten major Chinese cities Systematic micro-breaks affect concentration during cognitive comparison tasks: quantitative and qualitative measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1