{"title":"Optimization in Magnetic Coupler Design for Inductively Coupled Wireless Charging of Electric Vehicle: A Review","authors":"Viswanath Chakibanda, Venkata Lakshmi Narayana Komanapalli","doi":"10.1007/s13369-023-08119-7","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional automobiles are not eco-friendly; hence, a larger section of commuters expect battery electric vehicles (BEVs). BEVs are relatively safer and cleaner and invoke more constructive charging techniques for electric vehicles (EVs), including both wired and wireless approaches. Wired charging is common despite several serious problems, such as unkempt wiring and hazardous wet environmental conditions. In contrast, wireless charging is more convenient and adaptable regarding requirement of less conducting cables and facilitation of system mobility while dynamic mode of charging. Additionally, the nonexistence of physical galvanic connections is a noticeable advantage from the perspective of reliability, durability, low maintenance, and safety. Consequential from the above-mentioned unique advantages, primarily in general the inductively coupled wireless power transmission system is often used for the wireless charging of batteries in an EV. While showing this merit, this paper discusses a broad review of the general charging topologies for EV, different power pad structures and their features. Further, the magnetic core’s shape and features, various compensation topologies and their feature are discussed. Different optimization techniques are presented and investigated regarding optimization of critical parameters. Majorly transmission power, transmission efficiency, transmission distance, loss of magnetic coupler and the electromagnetic field exposure in the neighboring environment are highlighted to maximize the effectiveness of the magnetic coupler and decrease the effect of WPT on the environment. Moreover, this review suggests different optimization algorithms for designing power pads for the wireless charging of EVs. Finally, the wireless charging issues and remedial measures are discussed.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"48 11","pages":"14257 - 14294"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-023-08119-7","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional automobiles are not eco-friendly; hence, a larger section of commuters expect battery electric vehicles (BEVs). BEVs are relatively safer and cleaner and invoke more constructive charging techniques for electric vehicles (EVs), including both wired and wireless approaches. Wired charging is common despite several serious problems, such as unkempt wiring and hazardous wet environmental conditions. In contrast, wireless charging is more convenient and adaptable regarding requirement of less conducting cables and facilitation of system mobility while dynamic mode of charging. Additionally, the nonexistence of physical galvanic connections is a noticeable advantage from the perspective of reliability, durability, low maintenance, and safety. Consequential from the above-mentioned unique advantages, primarily in general the inductively coupled wireless power transmission system is often used for the wireless charging of batteries in an EV. While showing this merit, this paper discusses a broad review of the general charging topologies for EV, different power pad structures and their features. Further, the magnetic core’s shape and features, various compensation topologies and their feature are discussed. Different optimization techniques are presented and investigated regarding optimization of critical parameters. Majorly transmission power, transmission efficiency, transmission distance, loss of magnetic coupler and the electromagnetic field exposure in the neighboring environment are highlighted to maximize the effectiveness of the magnetic coupler and decrease the effect of WPT on the environment. Moreover, this review suggests different optimization algorithms for designing power pads for the wireless charging of EVs. Finally, the wireless charging issues and remedial measures are discussed.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.