{"title":"A hybrid monotone decision tree model for interval-valued attributes","authors":"Jiankai Chen, Zhongyan Li, Xin Wang, Junhai Zhai","doi":"10.1007/s43674-021-00016-6","DOIUrl":null,"url":null,"abstract":"<div><p>The existing monotonic decision tree algorithms are based on a linearly ordered constraint that certain attributes are monotonously consistent with the decision, which could be called monotonic attributes, whereas others, called non-monotonic attributes. In practice, monotonic and non-monotonic attributes coexist in most classification tasks, and some attribute values are even evaluated as interval numbers. In this paper, we proposed a fuzzy rank-inconsistent rate based on probability degree to judge the monotonicity of interval numbers. Furthermore, we devised a hybrid model composed of monotonic and non-monotonic attributes to construct a mixed monotone decision tree for interval-valued data. Experiments on artificial and real-world data sets show that the proposed hybrid model is effective.</p></div>","PeriodicalId":72089,"journal":{"name":"Advances in computational intelligence","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43674-021-00016-6.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computational intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43674-021-00016-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The existing monotonic decision tree algorithms are based on a linearly ordered constraint that certain attributes are monotonously consistent with the decision, which could be called monotonic attributes, whereas others, called non-monotonic attributes. In practice, monotonic and non-monotonic attributes coexist in most classification tasks, and some attribute values are even evaluated as interval numbers. In this paper, we proposed a fuzzy rank-inconsistent rate based on probability degree to judge the monotonicity of interval numbers. Furthermore, we devised a hybrid model composed of monotonic and non-monotonic attributes to construct a mixed monotone decision tree for interval-valued data. Experiments on artificial and real-world data sets show that the proposed hybrid model is effective.