A support vector approach based on penalty function method

Songfeng Zheng
{"title":"A support vector approach based on penalty function method","authors":"Songfeng Zheng","doi":"10.1007/s43674-021-00026-4","DOIUrl":null,"url":null,"abstract":"<div><p>Support vector machine (SVM) models are usually trained by solving the dual of a quadratic programming, which is time consuming. Using the idea of penalty function method from optimization theory, this paper combines the objective function and the constraints in the dual, obtaining an unconstrained optimization problem, which could be solved by a generalized Newton method, yielding an approximate solution to the original model. Extensive experiments on pattern classification were conducted, and compared to the quadratic programming-based models, the proposed approach is much more computationally efficient (tens to hundreds of times faster) and yields similar performance in terms of receiver operating characteristic curve. Furthermore, the proposed method and quadratic programming-based models extract almost the same set of support vectors.</p></div>","PeriodicalId":72089,"journal":{"name":"Advances in computational intelligence","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43674-021-00026-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computational intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43674-021-00026-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Support vector machine (SVM) models are usually trained by solving the dual of a quadratic programming, which is time consuming. Using the idea of penalty function method from optimization theory, this paper combines the objective function and the constraints in the dual, obtaining an unconstrained optimization problem, which could be solved by a generalized Newton method, yielding an approximate solution to the original model. Extensive experiments on pattern classification were conducted, and compared to the quadratic programming-based models, the proposed approach is much more computationally efficient (tens to hundreds of times faster) and yields similar performance in terms of receiver operating characteristic curve. Furthermore, the proposed method and quadratic programming-based models extract almost the same set of support vectors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于罚函数法的支持向量方法
支持向量机(SVM)模型通常通过求解二次规划的对偶来训练,这是耗时的。利用优化理论中罚函数法的思想,将对偶中的目标函数和约束条件相结合,得到了一个无约束优化问题,该问题可以用广义牛顿法求解,得到了原始模型的近似解。对模式分类进行了广泛的实验,与基于二次规划的模型相比,所提出的方法在计算上更高效(速度快几十到几百倍),并且在接收机工作特性曲线方面产生了类似的性能。此外,所提出的方法和基于二次规划的模型提取了几乎相同的支持向量集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-linear machine learning with sample perturbation augments leukemia relapse prognostics from single-cell proteomics measurements ARBP: antibiotic-resistant bacteria propagation bio-inspired algorithm and its performance on benchmark functions Detection and classification of diabetic retinopathy based on ensemble learning Office real estate price index forecasts through Gaussian process regressions for ten major Chinese cities Systematic micro-breaks affect concentration during cognitive comparison tasks: quantitative and qualitative measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1