Social influence-based personal latent factors learning for effective recommendation

Yunhe Wei, Huifang Ma, Ruoyi Zhang
{"title":"Social influence-based personal latent factors learning for effective recommendation","authors":"Yunhe Wei,&nbsp;Huifang Ma,&nbsp;Ruoyi Zhang","doi":"10.1007/s43674-021-00019-3","DOIUrl":null,"url":null,"abstract":"<div><p>Social recommendation has become an important technique of various online commerce platforms, which aims to predict the user preference based on the social network and the interactive network. Social recommendation, which can naturally integrate social information and interactive structure, has been demonstrated to be powerful in solving data sparsity and cold-start problems. Although some of the existing methods have been proven effective, the following two insights are often neglected. First, except for the explicit connections, social information contains implicit connections, e.g., indirect social relations. Indirect social relations can effectively improve the quality of recommendation when users only have few direct social relations. Second, the strength of social influence between users is different. In other words, users have different degrees of trust in different friends. These insights motivate us to propose a novel social recommendation model SIER (short for Social Influence-based Effective Recommendation) in this paper, which incorporates interactive information and social information into personal latent factors learning for social influence-based recommendation. Specifically, user preferences are captured in behavior history and social relations, i.e., user latent factors are shared in interactive network and social network. In particular, we utilize an overlapping community detection method to sufficiently capture the implicit relations in the social network. Extensive experiments on two real-world datasets demonstrate the effectiveness of the proposed method.</p></div>","PeriodicalId":72089,"journal":{"name":"Advances in computational intelligence","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43674-021-00019-3.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computational intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43674-021-00019-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Social recommendation has become an important technique of various online commerce platforms, which aims to predict the user preference based on the social network and the interactive network. Social recommendation, which can naturally integrate social information and interactive structure, has been demonstrated to be powerful in solving data sparsity and cold-start problems. Although some of the existing methods have been proven effective, the following two insights are often neglected. First, except for the explicit connections, social information contains implicit connections, e.g., indirect social relations. Indirect social relations can effectively improve the quality of recommendation when users only have few direct social relations. Second, the strength of social influence between users is different. In other words, users have different degrees of trust in different friends. These insights motivate us to propose a novel social recommendation model SIER (short for Social Influence-based Effective Recommendation) in this paper, which incorporates interactive information and social information into personal latent factors learning for social influence-based recommendation. Specifically, user preferences are captured in behavior history and social relations, i.e., user latent factors are shared in interactive network and social network. In particular, we utilize an overlapping community detection method to sufficiently capture the implicit relations in the social network. Extensive experiments on two real-world datasets demonstrate the effectiveness of the proposed method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于社会影响的个人潜在因素学习有效推荐
社交推荐已经成为各种在线商务平台的一项重要技术,旨在基于社交网络和互动网络预测用户偏好。社会推荐可以自然地整合社会信息和互动结构,在解决数据稀疏和冷启动问题方面已经被证明是强大的。尽管现有的一些方法已被证明是有效的,但以下两个见解往往被忽视。首先,除了显性联系之外,社会信息还包含隐性联系,例如间接社会关系。当用户只有很少的直接社会关系时,间接社会关系可以有效地提高推荐质量。第二,用户之间的社会影响力不同。换句话说,用户对不同的朋友有不同程度的信任。这些见解促使我们在本文中提出了一个新的社会推荐模型SIER(social Influence based Effective recommendation的缩写),该模型将互动信息和社会信息纳入个人潜在因素学习中,用于基于社会影响的推荐。具体而言,用户偏好被捕获在行为历史和社会关系中,即用户潜在因素在互动网络和社交网络中共享。特别地,我们利用重叠社区检测方法来充分捕捉社交网络中的隐含关系。在两个真实世界数据集上进行的大量实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-linear machine learning with sample perturbation augments leukemia relapse prognostics from single-cell proteomics measurements ARBP: antibiotic-resistant bacteria propagation bio-inspired algorithm and its performance on benchmark functions Detection and classification of diabetic retinopathy based on ensemble learning Office real estate price index forecasts through Gaussian process regressions for ten major Chinese cities Systematic micro-breaks affect concentration during cognitive comparison tasks: quantitative and qualitative measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1