Senior Shimhanda, Kotaro Hiraka, Taro Inoue, Kazuhiro Toyoda, Mengu Cho
{"title":"Sulphur-fuelled Surface Arc Thruster for Propelling Nanosatellites","authors":"Senior Shimhanda, Kotaro Hiraka, Taro Inoue, Kazuhiro Toyoda, Mengu Cho","doi":"10.1007/s42423-021-00074-5","DOIUrl":null,"url":null,"abstract":"<div><p>Pulsed electrothermal thrusters use kiloampere discharge currents for polytetrafluoroethylene (PTFE) ablation and sublimation. However, higher arc currents cause higher electromagnetic interference (EMI). A 10 J surface arc thruster (SAT), which adopts current regulating diodes (CRD), was developed that enables significant reduction in EMI. A CRD limits the discharge currents to 5 A in spite of the applied voltage. A low-melting-point sulphur propellant has been used that enables low-discharge currents to efficiently ablate it and accelerate it electrothermally. In this paper, the near-term potential for elemental sulphur propellant in SAT is investigated. The advantages of sulphur with respect to PTFE are presented. First, we measured the pulse width of the main discharge. Then sulphur propellant proved superior to PTFE propellant in discharge duration. The mean pulse widths of PTFE and sulphur are 3.38 and 22.1 ms, respectively. Second, we measured the pressure rise in the vacuum chamber after each discharge. The mean pressure rises of PTFE, sulphur powder and sulphur solid are 0.43, 0.94 and 1.9 mPa, respectively. Sulphur powder experienced the least intensity of discoloration in comparison with other propellants. The discharge initiator misfired frequently during PTFE ablation, but it ignited successively during sulphur ablation. Experimental results indicate sulphur is a suitable propellant for surface discharge propulsion, and for low arc currents is superior to PTFE.</p></div>","PeriodicalId":100039,"journal":{"name":"Advances in Astronautics Science and Technology","volume":"4 1","pages":"39 - 46"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42423-021-00074-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronautics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42423-021-00074-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Pulsed electrothermal thrusters use kiloampere discharge currents for polytetrafluoroethylene (PTFE) ablation and sublimation. However, higher arc currents cause higher electromagnetic interference (EMI). A 10 J surface arc thruster (SAT), which adopts current regulating diodes (CRD), was developed that enables significant reduction in EMI. A CRD limits the discharge currents to 5 A in spite of the applied voltage. A low-melting-point sulphur propellant has been used that enables low-discharge currents to efficiently ablate it and accelerate it electrothermally. In this paper, the near-term potential for elemental sulphur propellant in SAT is investigated. The advantages of sulphur with respect to PTFE are presented. First, we measured the pulse width of the main discharge. Then sulphur propellant proved superior to PTFE propellant in discharge duration. The mean pulse widths of PTFE and sulphur are 3.38 and 22.1 ms, respectively. Second, we measured the pressure rise in the vacuum chamber after each discharge. The mean pressure rises of PTFE, sulphur powder and sulphur solid are 0.43, 0.94 and 1.9 mPa, respectively. Sulphur powder experienced the least intensity of discoloration in comparison with other propellants. The discharge initiator misfired frequently during PTFE ablation, but it ignited successively during sulphur ablation. Experimental results indicate sulphur is a suitable propellant for surface discharge propulsion, and for low arc currents is superior to PTFE.