{"title":"Space Engineering Design Concept for Installing a Spatial Heavy Crane to Ascend and Descend Payloads","authors":"Edilson Gomes de Lima","doi":"10.1007/s42423-022-00107-7","DOIUrl":null,"url":null,"abstract":"<div><p>The main research question that this study tries to answer is how to produce and install a geostationary crane in space for raising and lowering payloads with the focus on how to install the counterweight, which will be presented the concept of an orbital loom factory to reach the geostationary stability. The strict objective of this study is to answer how to stabilize the space crane with the same Earth rotation that requires a counterweight at 36,000 km altitude. This study presents a proposal to solve this problem, by means of an orbital loom factory satellite in space to manufacture the cable in sections. Through the method of producing little by little, and at each section, a set of tests would be carried out, mechanically analyzed to safety, structural, commissioning, and maintenance. The study found that with this method, it is possible to install the space crane, which means to be an economic interface between Earth and space. Another question was answered on materials requests for engineering strategies, above the strength of materials limits. It was found that it is possible to work to increase this structural capacity using academically the crane model project to analyze the engineering of materials strategically, in addition to the available capacity, formulating a methodology through a suspended cable to withstand extreme mechanical conditions. Finally, will be presented why it is worth building this structure, and how to use the spatial crane as a greener way to access the space.</p></div>","PeriodicalId":100039,"journal":{"name":"Advances in Astronautics Science and Technology","volume":"5 2","pages":"183 - 193"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronautics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42423-022-00107-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The main research question that this study tries to answer is how to produce and install a geostationary crane in space for raising and lowering payloads with the focus on how to install the counterweight, which will be presented the concept of an orbital loom factory to reach the geostationary stability. The strict objective of this study is to answer how to stabilize the space crane with the same Earth rotation that requires a counterweight at 36,000 km altitude. This study presents a proposal to solve this problem, by means of an orbital loom factory satellite in space to manufacture the cable in sections. Through the method of producing little by little, and at each section, a set of tests would be carried out, mechanically analyzed to safety, structural, commissioning, and maintenance. The study found that with this method, it is possible to install the space crane, which means to be an economic interface between Earth and space. Another question was answered on materials requests for engineering strategies, above the strength of materials limits. It was found that it is possible to work to increase this structural capacity using academically the crane model project to analyze the engineering of materials strategically, in addition to the available capacity, formulating a methodology through a suspended cable to withstand extreme mechanical conditions. Finally, will be presented why it is worth building this structure, and how to use the spatial crane as a greener way to access the space.