{"title":"A compact modularized power-supply system for stable flow generation in microfluidic devices","authors":"Weihao Li, Wuyang Zhuge, Youwei Jiang, Kyle Jiang, Jun Ding, Xing Cheng","doi":"10.1007/s10404-023-02693-w","DOIUrl":null,"url":null,"abstract":"<div><p>The miniaturization of microfluidic systems plays a pivotal role in achieving portability and compactness. However, conventional microfluidic systems heavily rely on external bulky facilities, such as syringe pumps and compressed air supplies, for continuous flow, which restricts their dissemination across various applications. To address this limitation, micropumps have emerged as a potential solution for portable power supply in microfluidic systems, with piezoelectric micropumps being widely adopted. Nonetheless, the inherent pulsatile mechanism of piezoelectric micropumps leads to unstable flow, necessitating appropriate mitigation for applications requiring flow stability. This research introduces an innovative hybrid pumping system that integrates a wirelessly controlled micropump with a 3D-printed modular microfluidic low-pass-filter. The primary objective of this system is to offer a portable and stable flow source for microfluidic applications. The system design and characterization are based on a three-element circuit model. Experimental results demonstrate a highly stabilized flow rate of 657 ± 7 µL/min. Furthermore, the versatility of the system is showcased by successfully forming droplets with a polydispersity ranging from 1.5% to 4%, comparable to that of bulky commercial pumping systems. This hybrid pumping system offers a promising solution for applications necessitating portable and stable flow sources, and its reconfigurability suggests potential integration into multifunctional microfluidic platforms.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-023-02693-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The miniaturization of microfluidic systems plays a pivotal role in achieving portability and compactness. However, conventional microfluidic systems heavily rely on external bulky facilities, such as syringe pumps and compressed air supplies, for continuous flow, which restricts their dissemination across various applications. To address this limitation, micropumps have emerged as a potential solution for portable power supply in microfluidic systems, with piezoelectric micropumps being widely adopted. Nonetheless, the inherent pulsatile mechanism of piezoelectric micropumps leads to unstable flow, necessitating appropriate mitigation for applications requiring flow stability. This research introduces an innovative hybrid pumping system that integrates a wirelessly controlled micropump with a 3D-printed modular microfluidic low-pass-filter. The primary objective of this system is to offer a portable and stable flow source for microfluidic applications. The system design and characterization are based on a three-element circuit model. Experimental results demonstrate a highly stabilized flow rate of 657 ± 7 µL/min. Furthermore, the versatility of the system is showcased by successfully forming droplets with a polydispersity ranging from 1.5% to 4%, comparable to that of bulky commercial pumping systems. This hybrid pumping system offers a promising solution for applications necessitating portable and stable flow sources, and its reconfigurability suggests potential integration into multifunctional microfluidic platforms.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).