{"title":"Backstepping sliding mode-based anti-skid braking control for a civil aircraft","authors":"Zhenjie Ma, Shiqian Liu, Weizhi Lyu, Kuan Wang","doi":"10.1007/s42401-023-00205-w","DOIUrl":null,"url":null,"abstract":"<div><p>Taking off and landing are critical phases and it is easy to happen flight disaster for them due to complex environment and weather. To improve flight safety of the aircraft, an anti-skid control method is proposed. First, the ground dynamics model of the civil aircraft is established. Second, a baseline controller is designed to control the velocity and yaw angle of the civil aircraft by Proportional-Integral (PI) technique. Meanwhile, considering high-speed factor during the braking phase, the braking force of the aircraft is over large, and the wheels are easy to skid. To overcome this, an anti-skid system is built, and the dynamic model of the aircraft anti-skid braking system is established. A backstepping sliding mode control algorithm is proposed to control the braking speed. And the slip ratio of the aircraft wheel is controlled by adjusting braking coefficient <span>\\({\\mu }_{Brake}\\)</span> and the optimal slip ratio is achieved. Stability of the closed-loop system is proved by Lyapunov stability theory. Simulation results show that the proposed controller can track the desired trajectory well and the braking efficiency is optimal, which effectively shortens the braking distance of the aircraft, reduces wear of tire, and prevents puncture caused by wheel slip.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"6 2","pages":"187 - 197"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42401-023-00205-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-023-00205-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Taking off and landing are critical phases and it is easy to happen flight disaster for them due to complex environment and weather. To improve flight safety of the aircraft, an anti-skid control method is proposed. First, the ground dynamics model of the civil aircraft is established. Second, a baseline controller is designed to control the velocity and yaw angle of the civil aircraft by Proportional-Integral (PI) technique. Meanwhile, considering high-speed factor during the braking phase, the braking force of the aircraft is over large, and the wheels are easy to skid. To overcome this, an anti-skid system is built, and the dynamic model of the aircraft anti-skid braking system is established. A backstepping sliding mode control algorithm is proposed to control the braking speed. And the slip ratio of the aircraft wheel is controlled by adjusting braking coefficient \({\mu }_{Brake}\) and the optimal slip ratio is achieved. Stability of the closed-loop system is proved by Lyapunov stability theory. Simulation results show that the proposed controller can track the desired trajectory well and the braking efficiency is optimal, which effectively shortens the braking distance of the aircraft, reduces wear of tire, and prevents puncture caused by wheel slip.
期刊介绍:
Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering.
Potential topics include, but are not limited to:
Trans-space vehicle systems design and integration
Air vehicle systems
Space vehicle systems
Near-space vehicle systems
Aerospace robotics and unmanned system
Communication, navigation and surveillance
Aerodynamics and aircraft design
Dynamics and control
Aerospace propulsion
Avionics system
Opto-electronic system
Air traffic management
Earth observation
Deep space exploration
Bionic micro-aircraft/spacecraft
Intelligent sensing and Information fusion