Update of approximations in ordered information systems under variations of attribute and object set

Yan Li, Xiaoxue Wu, Qiang Hua
{"title":"Update of approximations in ordered information systems under variations of attribute and object set","authors":"Yan Li,&nbsp;Xiaoxue Wu,&nbsp;Qiang Hua","doi":"10.1007/s43674-021-00011-x","DOIUrl":null,"url":null,"abstract":"<div><p>Many collected data from real world applications often evolve when new attributes or objects are inserted or old ones are removed. The set approximations of ordered information systems (OIS) need to be updated from time to time for further data reduction, analysis, or decision-making. Incremental approaches are feasible and efficient techniques for updating approaches when any variation occurs. In this paper, considering OIS for multi-criteria classification problems, we discuss the principles of incrementally updating approximations in dominance relation based method in four different types of dynamic environments which combine the changes of both attribute set and object set. In each dynamic environment, the corresponding updating principles and algorithm are given with detail proofs. The experimental results and analysis on UCI data sets show that the proposed incremental approach outperforms the non-incremental method and the integration of current incremental algorithms in the implementation efficiency.</p></div>","PeriodicalId":72089,"journal":{"name":"Advances in computational intelligence","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computational intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43674-021-00011-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many collected data from real world applications often evolve when new attributes or objects are inserted or old ones are removed. The set approximations of ordered information systems (OIS) need to be updated from time to time for further data reduction, analysis, or decision-making. Incremental approaches are feasible and efficient techniques for updating approaches when any variation occurs. In this paper, considering OIS for multi-criteria classification problems, we discuss the principles of incrementally updating approximations in dominance relation based method in four different types of dynamic environments which combine the changes of both attribute set and object set. In each dynamic environment, the corresponding updating principles and algorithm are given with detail proofs. The experimental results and analysis on UCI data sets show that the proposed incremental approach outperforms the non-incremental method and the integration of current incremental algorithms in the implementation efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
属性和对象集变化下有序信息系统中近似值的更新
许多从现实世界应用程序收集的数据通常在插入新属性或对象或删除旧属性或对象时发生变化。有序信息系统(OIS)的集合近似值需要不时更新,以进行进一步的数据缩减、分析或决策。增量方法是在发生任何变化时更新方法的可行且有效的技术。在本文中,考虑多准则分类问题的OIS,我们讨论了在四种不同类型的动态环境中,在基于优势关系的方法中,在属性集和对象集的变化相结合的情况下,增量更新近似的原理。在各种动态环境下,给出了相应的更新原理和算法,并给出了详细的证明。实验结果和对UCI数据集的分析表明,所提出的增量方法在实现效率上优于非增量方法和现有增量算法的集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-linear machine learning with sample perturbation augments leukemia relapse prognostics from single-cell proteomics measurements ARBP: antibiotic-resistant bacteria propagation bio-inspired algorithm and its performance on benchmark functions Detection and classification of diabetic retinopathy based on ensemble learning Office real estate price index forecasts through Gaussian process regressions for ten major Chinese cities Systematic micro-breaks affect concentration during cognitive comparison tasks: quantitative and qualitative measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1