{"title":"Three-dimensional printing of biomaterials for bone tissue engineering: a review","authors":"Ahmed El-Fiqi","doi":"10.1007/s11706-023-0644-x","DOIUrl":null,"url":null,"abstract":"<div><p>Processing biomaterials into porous scaffolds for bone tissue engineering is a critical and a key step in defining and controlling their physicochemical, mechanical, and biological properties. Biomaterials such as polymers are commonly processed into porous scaffolds using conventional processing techniques, e.g., salt leaching. However, these traditional techniques have shown unavoidable limitations and several shortcomings. For instance, tissue-engineered porous scaffolds with a complex three-dimensional (3D) geometric architecture mimicking the complexity of the extracellular matrix of native tissues and with the ability to fit into irregular tissue defects cannot be produced using the conventional processing techniques. 3D printing has recently emerged as an advanced processing technology that enables the processing of biomaterials into 3D porous scaffolds with highly complex architectures and tunable shapes to precisely fit into irregular and complex tissue defects. 3D printing provides computer-based layer-by-layer additive manufacturing processes of highly precise and complex 3D structures with well-defined porosity and controlled mechanical properties in a highly reproducible manner. Furthermore, 3D printing technology provides an accurate patient-specific tissue defect model and enables the fabrication of a patient-specific tissue-engineered porous scaffold with pre-customized properties.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-023-0644-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Processing biomaterials into porous scaffolds for bone tissue engineering is a critical and a key step in defining and controlling their physicochemical, mechanical, and biological properties. Biomaterials such as polymers are commonly processed into porous scaffolds using conventional processing techniques, e.g., salt leaching. However, these traditional techniques have shown unavoidable limitations and several shortcomings. For instance, tissue-engineered porous scaffolds with a complex three-dimensional (3D) geometric architecture mimicking the complexity of the extracellular matrix of native tissues and with the ability to fit into irregular tissue defects cannot be produced using the conventional processing techniques. 3D printing has recently emerged as an advanced processing technology that enables the processing of biomaterials into 3D porous scaffolds with highly complex architectures and tunable shapes to precisely fit into irregular and complex tissue defects. 3D printing provides computer-based layer-by-layer additive manufacturing processes of highly precise and complex 3D structures with well-defined porosity and controlled mechanical properties in a highly reproducible manner. Furthermore, 3D printing technology provides an accurate patient-specific tissue defect model and enables the fabrication of a patient-specific tissue-engineered porous scaffold with pre-customized properties.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.