Erika Fernandes Neves, Thiago dos Santos Montagna, Kamylla Balbuena Michelutti, Sidnei Eduardo Lima-Junior, Claudia Andréa Lima Cardoso, William Fernando Antonialli-Junior
{"title":"Role of juvenile hormone in oogenesis, chemical profile, and behavior of the wasp Mischocyttarus consimilis (Vespidae: Polistinae)","authors":"Erika Fernandes Neves, Thiago dos Santos Montagna, Kamylla Balbuena Michelutti, Sidnei Eduardo Lima-Junior, Claudia Andréa Lima Cardoso, William Fernando Antonialli-Junior","doi":"10.1007/s00049-022-00378-4","DOIUrl":null,"url":null,"abstract":"<div><p>In social insects, juvenile hormone (JH) affects the degree of ovarian development, reproductive status, and temporal polyethism in workers. JH also contributes to determining the epicuticular chemical composition, which differentiates the castes of queens and workers. However, a few studies have evaluated the action of JH on behavioral ontogeny, cuticular chemical profile, and oocyte length and width, especially in social wasps of independent foundation. Therefore, the following hypotheses were tested: (i) topical application of JH changes the behavioral ontogeny of newly emerged workers; and (ii) changes might be detected in the cuticular chemical composition and oocyte length and width of newly emerged females receiving topical application of JH. The treatment consisted of application of JH, at a concentration of 25 µg.µL<sup>−1</sup> in acetone, to 1-day-old <i>Mischocyttarus consimilis</i> workers. The application of JH to newly emerged <i>M. consimilis</i> females significantly altered oocyte length and width, with effects on behavioral ontogeny and the cuticular chemical compounds signaling these parameters in the colony. No effects of the solvent on female physiology were observed, reinforcing that the observed changes were due to the specific effects of JH.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"32 6","pages":"197 - 207"},"PeriodicalIF":1.6000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-022-00378-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In social insects, juvenile hormone (JH) affects the degree of ovarian development, reproductive status, and temporal polyethism in workers. JH also contributes to determining the epicuticular chemical composition, which differentiates the castes of queens and workers. However, a few studies have evaluated the action of JH on behavioral ontogeny, cuticular chemical profile, and oocyte length and width, especially in social wasps of independent foundation. Therefore, the following hypotheses were tested: (i) topical application of JH changes the behavioral ontogeny of newly emerged workers; and (ii) changes might be detected in the cuticular chemical composition and oocyte length and width of newly emerged females receiving topical application of JH. The treatment consisted of application of JH, at a concentration of 25 µg.µL−1 in acetone, to 1-day-old Mischocyttarus consimilis workers. The application of JH to newly emerged M. consimilis females significantly altered oocyte length and width, with effects on behavioral ontogeny and the cuticular chemical compounds signaling these parameters in the colony. No effects of the solvent on female physiology were observed, reinforcing that the observed changes were due to the specific effects of JH.
期刊介绍:
It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.