{"title":"Nanomechanics of minerals: understandings and developments through instrumented nanoindentation techniques","authors":"Rajiv Mukherjee, Santanu Misra","doi":"10.1007/s00269-023-01235-8","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the dynamics of the lithosphere relies heavily on the scale-dependent rheology of minerals. While quartz, feldspar, and phyllosilicates are the key phases to govern the rheology of the crust and tectonic margins, olivine and other mafic phases control the same in the upper mantle. Phase transition, solid-state substitution, polymorphism, etc. also affect mineral phase rheology. High pressure–temperature deformation tests with natural, synthetic and analog materials have improved our interpretation of the geodynamic state of the lithosphere. However, deforming and studying a single crystal is not easy, because of the scarcity of specimens and laborious sample preparations. Experimental micro- to nanoindentation at room and/or elevated temperatures has proven to be a convenient method over mesoscale compressive testing. Micro- to nanoindentation technique enables higher precision, faster data acquisition and ultra-high resolution (nanoscale) load and displacement. Hardness, elastic moduli, yield stress, fracture toughness, fracture surface energy and rate-dependent creep of mono- or polycrystalline minerals are evaluated using this technique. Here, we present a comprehensive assessment of micro- to nano-mechanics of minerals. We first cover the fundamental theories of instrumented indentation, experimental procedures, pre- and post-indentation interpretations using various existing models followed by a detailed discussion on the application of nanoindentation in understanding the rheology and deformation mechanisms of various minerals commonly occur in the crust and upper mantle. We also address some of the major limitations of indentation tests (e.g., indentation size effect). Finally, we suggest potential future research areas in mineral rheology using instrumented indentation.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-023-01235-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-023-01235-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the dynamics of the lithosphere relies heavily on the scale-dependent rheology of minerals. While quartz, feldspar, and phyllosilicates are the key phases to govern the rheology of the crust and tectonic margins, olivine and other mafic phases control the same in the upper mantle. Phase transition, solid-state substitution, polymorphism, etc. also affect mineral phase rheology. High pressure–temperature deformation tests with natural, synthetic and analog materials have improved our interpretation of the geodynamic state of the lithosphere. However, deforming and studying a single crystal is not easy, because of the scarcity of specimens and laborious sample preparations. Experimental micro- to nanoindentation at room and/or elevated temperatures has proven to be a convenient method over mesoscale compressive testing. Micro- to nanoindentation technique enables higher precision, faster data acquisition and ultra-high resolution (nanoscale) load and displacement. Hardness, elastic moduli, yield stress, fracture toughness, fracture surface energy and rate-dependent creep of mono- or polycrystalline minerals are evaluated using this technique. Here, we present a comprehensive assessment of micro- to nano-mechanics of minerals. We first cover the fundamental theories of instrumented indentation, experimental procedures, pre- and post-indentation interpretations using various existing models followed by a detailed discussion on the application of nanoindentation in understanding the rheology and deformation mechanisms of various minerals commonly occur in the crust and upper mantle. We also address some of the major limitations of indentation tests (e.g., indentation size effect). Finally, we suggest potential future research areas in mineral rheology using instrumented indentation.
期刊介绍:
Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are:
-Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.)
-General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.)
-Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.)
-Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.)
-Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems
-Electron microscopy in support of physical and chemical studies
-Computational methods in the study of the structure and properties of minerals
-Mineral surfaces (experimental methods, structure and properties)