Waste-derived Materials: Opportunities in Photocatalysis

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Topics in Current Chemistry Pub Date : 2019-11-28 DOI:10.1007/s41061-019-0264-1
Daily Rodríguez-Padrón, Rafael Luque, Mario J. Muñoz-Batista
{"title":"Waste-derived Materials: Opportunities in Photocatalysis","authors":"Daily Rodríguez-Padrón,&nbsp;Rafael Luque,&nbsp;Mario J. Muñoz-Batista","doi":"10.1007/s41061-019-0264-1","DOIUrl":null,"url":null,"abstract":"<p>Waste-derived materials have been gaining increased attention in recent years due to their great potential and environmentally friendly nature. Several contributions in the literature have covered the advances achieved so far in this area. Nonetheless, to the best of our knowledge, no review has been dedicated specifically to waste-derived or templated photocatalytic materials. Both photocatalysis and (bio)waste-inspired design yield materials of a remarkably green nature. Therefore, the partnership between them may open promising possibilities for both waste valorization and photocatalytic processes, which in turn will lead to sustainable development globally, with the potential for full utilization of renewable energy sources such as biomass and sunlight. Several photocatalytic waste-derived materials, synthetic procedures, and applications will be described throughout this work, including waste-derived/templated TiO<sub>2</sub>, ZnO, and metal sulfide materials. Special attention will be given to biomass-inspired carbonaceous materials, including carbon quantum dots and graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>).</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-019-0264-1","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-019-0264-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 22

Abstract

Waste-derived materials have been gaining increased attention in recent years due to their great potential and environmentally friendly nature. Several contributions in the literature have covered the advances achieved so far in this area. Nonetheless, to the best of our knowledge, no review has been dedicated specifically to waste-derived or templated photocatalytic materials. Both photocatalysis and (bio)waste-inspired design yield materials of a remarkably green nature. Therefore, the partnership between them may open promising possibilities for both waste valorization and photocatalytic processes, which in turn will lead to sustainable development globally, with the potential for full utilization of renewable energy sources such as biomass and sunlight. Several photocatalytic waste-derived materials, synthetic procedures, and applications will be described throughout this work, including waste-derived/templated TiO2, ZnO, and metal sulfide materials. Special attention will be given to biomass-inspired carbonaceous materials, including carbon quantum dots and graphitic carbon nitride (g-C3N4).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
废物衍生材料:光催化的机会
近年来,废物来源的材料由于其巨大的潜力和环境友好性而受到越来越多的关注。文献中的一些贡献涵盖了迄今为止在这一领域取得的进展。尽管如此,据我们所知,还没有专门针对废物衍生或模板化光催化材料的综述。光催化和(生物)废物启发设计产生的材料具有显著的绿色性质。因此,它们之间的伙伴关系可能为废物增值和光催化过程开辟有希望的可能性,这反过来将导致全球可持续发展,并有可能充分利用生物量和阳光等可再生能源。本文将介绍几种光催化废物衍生材料、合成方法和应用,包括废物衍生/模板化TiO2、ZnO和金属硫化物材料。特别关注生物质启发的碳质材料,包括碳量子点和石墨氮化碳(g-C3N4)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Topics in Current Chemistry
Topics in Current Chemistry Chemistry-General Chemistry
CiteScore
13.70
自引率
1.20%
发文量
48
期刊介绍: Topics in Current Chemistry is a journal that presents critical reviews of present and future trends in modern chemical research. It covers all areas of chemical science, including interactions with related disciplines like biology, medicine, physics, and materials science. The articles in this journal are organized into thematic collections, offering a comprehensive perspective on emerging research to non-specialist readers in academia or industry. Each review article focuses on one aspect of the topic and provides a critical survey, placing it in the context of the collection. Selected examples highlight significant developments from the past 5 to 10 years. Instead of providing an exhaustive summary or extensive data, the articles concentrate on methodological thinking. This approach allows non-specialist readers to understand the information fully and presents the potential prospects for future developments.
期刊最新文献
Structure-Based Drug Design of RdRp Inhibitors against SARS-CoV-2 The Intramolecular Povarov Tool in the Construction of Fused Nitrogen-Containing Heterocycles Photothermal Catalytic CO2 Conversion: Beyond Catalysis and Photocatalysis Multicomponent Reactions Using C,N-Binucleophilic Nature of Aminopyrazoles: Construction of Pyrazole-Fused Heterocycles Laser-Induced Transfer of Functional Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1