Earing prediction with a stress invariant-based anisotropic yield function under non-associated flow rule

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING International Journal of Material Forming Pub Date : 2023-03-20 DOI:10.1007/s12289-023-01749-0
Saijun Zhang, Yanshan Lou, Jeong Whan Yoon
{"title":"Earing prediction with a stress invariant-based anisotropic yield function under non-associated flow rule","authors":"Saijun Zhang,&nbsp;Yanshan Lou,&nbsp;Jeong Whan Yoon","doi":"10.1007/s12289-023-01749-0","DOIUrl":null,"url":null,"abstract":"<div><h2>Abstract\n</h2><div><p>In this work, a recently proposed anisotropic Drucker function is implemented with non-associated flow rule (non-AFR) to predict the earing profile during cup drawing. The finite element formulation under non-AFR is developed for the precise simulation of the deep drawing process with a strong anisotropic aluminum alloy of AA2090-T3. The comparison between the simulation and experimental results reveals that the earing profile numerically predicted by the anisotropic Drucker function under non-AFR is in good agreement with the measured profile from experiments. It’s also reveal that the improvement of accuracy of prediction for r-values does not always mean the synchronously improvement in prediction the earing profile for strong anisotropic phenomena of deep drawing for AA2090-T3. The computation efficiency of the anisotropic Drucker function is also investigated and compared with the Yld2004-18p function, which shows that 40% reduction of computational cost can be reached. The influence of different shapes of yield and potential on earing prediction is also investigated by combining the anisotropic Drucker function and Yld2004-18p function under non-AFR, which demonstrates that a proper shape of plastic potential is very important to predict the small ear around 0º for AA2090-T3. It also proves that both the yield and plastic potential functions strongly influence the height and earing profile in the simulation of cup deep drawing. It’s also should be mentioned that the r-value does not keep constant in the simulation in the uniaxial tension of a single cubic element, but varies with the increase of plastic deformation in directional uniaxial tension, which may raise the difficulty for accurately prediction in metal forming.</p></div></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-023-01749-0.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01749-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract

In this work, a recently proposed anisotropic Drucker function is implemented with non-associated flow rule (non-AFR) to predict the earing profile during cup drawing. The finite element formulation under non-AFR is developed for the precise simulation of the deep drawing process with a strong anisotropic aluminum alloy of AA2090-T3. The comparison between the simulation and experimental results reveals that the earing profile numerically predicted by the anisotropic Drucker function under non-AFR is in good agreement with the measured profile from experiments. It’s also reveal that the improvement of accuracy of prediction for r-values does not always mean the synchronously improvement in prediction the earing profile for strong anisotropic phenomena of deep drawing for AA2090-T3. The computation efficiency of the anisotropic Drucker function is also investigated and compared with the Yld2004-18p function, which shows that 40% reduction of computational cost can be reached. The influence of different shapes of yield and potential on earing prediction is also investigated by combining the anisotropic Drucker function and Yld2004-18p function under non-AFR, which demonstrates that a proper shape of plastic potential is very important to predict the small ear around 0º for AA2090-T3. It also proves that both the yield and plastic potential functions strongly influence the height and earing profile in the simulation of cup deep drawing. It’s also should be mentioned that the r-value does not keep constant in the simulation in the uniaxial tension of a single cubic element, but varies with the increase of plastic deformation in directional uniaxial tension, which may raise the difficulty for accurately prediction in metal forming.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非关联流动规律下基于应力不变量的各向异性屈服函数的产量预测
摘要本文采用非关联流动规则(non-AFR)实现了最近提出的各向异性Drucker函数,以预测杯形拉伸过程中的耳形。为精确模拟强各向异性铝合金AA2090-T3的拉深过程,建立了非afr条件下的有限元公式。仿真结果与实验结果的比较表明,各向异性Drucker函数在非afr条件下数值预测的耳廓廓形与实验实测廓形吻合较好。同时也揭示了r值预测精度的提高并不一定意味着AA2090-T3深拉深强各向异性现象的耳廓线预测精度的同步提高。研究了各向异性Drucker函数的计算效率,并与Yld2004-18p函数进行了比较,结果表明,各向异性Drucker函数的计算成本可降低40%。结合非afr条件下的各向异性Drucker函数和Yld2004-18p函数,研究了不同形状的产量和势对穗形预测的影响,结果表明,适当的塑性势形状对于预测AA2090-T3 0º左右的小穗非常重要。在杯形拉深模拟中,屈服函数和塑性势函数都对高度和凸缘形有较大的影响。需要指出的是,在单立方元单轴拉伸的模拟中,r值并不是恒定的,而是随着单向单轴拉伸塑性变形的增大而变化,这可能会增加金属成形过程中准确预测的难度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
期刊最新文献
Analysis of bending behavior of ultra-thin austenitic stainless steel sheets considering surface effect Process window and mechanical properties for thin magnesium- and zinc-wires in dieless wire drawing Smart manufacturing platform based on input-output empirical relationships for process monitoring Analysis of wall thickness evolution and forming quality of sheet metal manufactured by wrinkles-free forming method Procedure for optimal infrared heating of PET preform via a simplified 3D Modelling with ventilation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1