Philippe Roof , Maria Ricci , Pierre Genin , Monty A. Montano , Max Essex , Mark A. Wainberg , Anne Gatignol , John Hiscott
{"title":"Differential Regulation of HIV-1 Clade-Specific B, C, and E Long Terminal Repeats by NF-κB and the Tat Transactivator","authors":"Philippe Roof , Maria Ricci , Pierre Genin , Monty A. Montano , Max Essex , Mark A. Wainberg , Anne Gatignol , John Hiscott","doi":"10.1006/viro.2001.1397","DOIUrl":null,"url":null,"abstract":"<div><div>The major group of human immunodeficiency viruses (HIV-1) that comprise the current global pandemic have diversified during their worldwide spread and may be divided into at least 10 distinct subtypes or clades, A through J. Subtype B predominates in North America and Europe, subtype E predominates in Southeast Asia, and subtype C predominates in sub-Saharan Africa. Functional distinctions in long terminal repeat (LTR) architecture among HIV subtypes have been identified, thus raising the possibility that regulatory divergence among the subtypes of HIV-1 has occurred. In addition to the transcriptional specificity of the HIV-1 LTR, productive HIV-1 replication is also dependent upon the viral Tat protein. Therefore, we sought to investigate whether interactions between host signaling pathways and the NF-κB regions of different HIV-1 subtypes, together with subtype-specific interactions between Tat, TAR, and cellular proteins, modulate the efficiency of HIV-1 clade-specific gene transcription. We demonstrate that the NF-κB sites of subtypes B and E both bind NF-κB-related complexes. However, the duplicated κB sites of the C subtype do not compete for NF-κB binding. Also, clade E Tat protein possesses the highest transactivation capacity, regardless of the LTR context. Furthermore, preliminary evidence suggests that the acetylation of subtype-specific Tat proteins may correlate with their transactivation efficiency.</div></div>","PeriodicalId":23666,"journal":{"name":"Virology","volume":"296 1","pages":"Pages 77-83"},"PeriodicalIF":2.8000,"publicationDate":"2002-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042682201913972","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The major group of human immunodeficiency viruses (HIV-1) that comprise the current global pandemic have diversified during their worldwide spread and may be divided into at least 10 distinct subtypes or clades, A through J. Subtype B predominates in North America and Europe, subtype E predominates in Southeast Asia, and subtype C predominates in sub-Saharan Africa. Functional distinctions in long terminal repeat (LTR) architecture among HIV subtypes have been identified, thus raising the possibility that regulatory divergence among the subtypes of HIV-1 has occurred. In addition to the transcriptional specificity of the HIV-1 LTR, productive HIV-1 replication is also dependent upon the viral Tat protein. Therefore, we sought to investigate whether interactions between host signaling pathways and the NF-κB regions of different HIV-1 subtypes, together with subtype-specific interactions between Tat, TAR, and cellular proteins, modulate the efficiency of HIV-1 clade-specific gene transcription. We demonstrate that the NF-κB sites of subtypes B and E both bind NF-κB-related complexes. However, the duplicated κB sites of the C subtype do not compete for NF-κB binding. Also, clade E Tat protein possesses the highest transactivation capacity, regardless of the LTR context. Furthermore, preliminary evidence suggests that the acetylation of subtype-specific Tat proteins may correlate with their transactivation efficiency.
期刊介绍:
Launched in 1955, Virology is a broad and inclusive journal that welcomes submissions on all aspects of virology including plant, animal, microbial and human viruses. The journal publishes basic research as well as pre-clinical and clinical studies of vaccines, anti-viral drugs and their development, anti-viral therapies, and computational studies of virus infections. Any submission that is of broad interest to the community of virologists/vaccinologists and reporting scientifically accurate and valuable research will be considered for publication, including negative findings and multidisciplinary work.Virology is open to reviews, research manuscripts, short communication, registered reports as well as follow-up manuscripts.