Effects of different mapping functions on GPS network solutions

IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Acta Geodaetica et Geophysica Pub Date : 2022-11-29 DOI:10.1007/s40328-022-00393-5
Gizem Sezer, Ali Hasan Dogan, Bahattin Erdogan
{"title":"Effects of different mapping functions on GPS network solutions","authors":"Gizem Sezer,&nbsp;Ali Hasan Dogan,&nbsp;Bahattin Erdogan","doi":"10.1007/s40328-022-00393-5","DOIUrl":null,"url":null,"abstract":"<div><p>In geodetic studies, Global Positioning System (GPS) is widely preferred since it can be operated day and night and in all weather conditions. Also, GPS is used especially in the studies which require high accuracy such as monitoring deformations and determining tectonic movements. However, GPS error sources must be eliminated to achieve precise positioning. The troposphere, one of the major error sources, causes signal delays due to its dry air and water vapor content. Due to the fact that composition of the troposphere changes heavily both temporally and spatially, tropospheric delay is determined in zenith direction although it occurs along the signal path. This relation between the zenith direction and signal path is provided by the mapping functions (MFs). For the tropospheric delays the zenith signal delays are mapped to satellites at a given ground-based stations using MFs. In this study, the effects of most preferred MFs in the literature such as the Niell Mapping Function, the Global Mapping Function and the Vienna Mapping Function 1 have been investigated to show their effects on GPS network solution. Three GPS networks that have different baseline lengths have been analyzed. According to the results, it can be stated that the differences between the MFs are negligible, especially in the horizontal component. Moreover, since the vertical coordinate differences are greater in the network that has largest baselines, the choice of MF can significantly affect the results of the studies which require larger baselines.</p></div>","PeriodicalId":48965,"journal":{"name":"Acta Geodaetica et Geophysica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geodaetica et Geophysica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s40328-022-00393-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In geodetic studies, Global Positioning System (GPS) is widely preferred since it can be operated day and night and in all weather conditions. Also, GPS is used especially in the studies which require high accuracy such as monitoring deformations and determining tectonic movements. However, GPS error sources must be eliminated to achieve precise positioning. The troposphere, one of the major error sources, causes signal delays due to its dry air and water vapor content. Due to the fact that composition of the troposphere changes heavily both temporally and spatially, tropospheric delay is determined in zenith direction although it occurs along the signal path. This relation between the zenith direction and signal path is provided by the mapping functions (MFs). For the tropospheric delays the zenith signal delays are mapped to satellites at a given ground-based stations using MFs. In this study, the effects of most preferred MFs in the literature such as the Niell Mapping Function, the Global Mapping Function and the Vienna Mapping Function 1 have been investigated to show their effects on GPS network solution. Three GPS networks that have different baseline lengths have been analyzed. According to the results, it can be stated that the differences between the MFs are negligible, especially in the horizontal component. Moreover, since the vertical coordinate differences are greater in the network that has largest baselines, the choice of MF can significantly affect the results of the studies which require larger baselines.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同制图功能对GPS网络解决方案的影响
在大地测量学研究中,全球定位系统(GPS)被广泛使用,因为它可以在昼夜和所有天气条件下运行。此外,GPS还特别用于监测变形和确定构造运动等对精度要求较高的研究。然而,要实现精确定位,必须消除GPS误差源。对流层是主要的误差来源之一,由于其干燥的空气和水蒸气含量,导致信号延迟。由于对流层的组成在时间和空间上都有很大的变化,对流层延迟虽然沿信号路径发生,但在天顶方向确定。天顶方向和信号路径之间的关系由映射函数(MFs)提供。对于对流层延迟,天顶信号延迟是用MFs映射到给定地面站的卫星上的。本文研究了Niell Mapping Function、Global Mapping Function和Vienna Mapping Function 1等文献中最常用的MFs对GPS网络解的影响。分析了具有不同基线长度的三个GPS网络。根据计算结果,可以看出,各力学参数之间的差异可以忽略不计,特别是在水平分量上。此外,由于基线最大的网络中垂直坐标差异更大,因此MF的选择会显著影响需要更大基线的研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Geodaetica et Geophysica
Acta Geodaetica et Geophysica GEOCHEMISTRY & GEOPHYSICS-
CiteScore
3.10
自引率
7.10%
发文量
26
期刊介绍: The journal publishes original research papers in the field of geodesy and geophysics under headings: aeronomy and space physics, electromagnetic studies, geodesy and gravimetry, geodynamics, geomathematics, rock physics, seismology, solid earth physics, history. Papers dealing with problems of the Carpathian region and its surroundings are preferred. Similarly, papers on topics traditionally covered by Hungarian geodesists and geophysicists (e.g. robust estimations, geoid, EM properties of the Earth’s crust, geomagnetic pulsations and seismological risk) are especially welcome.
期刊最新文献
Selection of a calibration system for relative gravimeters and testing of the processing using the example of the Zhetygen calibration baseline in Kazakhstan A forwarding spoofing detection algorithm for Beidou navigation satellite system vulnerability Machine learning assisted model based petrographic classification: a case study from Bokaro coal field Spatial and temporal analysis of daily terrestrial water storage anomalies in China Enhancing landslide inventory mapping through Multi-SAR image analysis: a comprehensive examination of current landslide zones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1