Quantitative analysis of lower ionospheric response time delay associated to the solar flares

IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Acta Geodaetica et Geophysica Pub Date : 2022-08-30 DOI:10.1007/s40328-022-00390-8
Sayak Chakraborty, Kumar Aryan, Torsha Roy, Subrata Kumar Midya, Tamal Basak
{"title":"Quantitative analysis of lower ionospheric response time delay associated to the solar flares","authors":"Sayak Chakraborty,&nbsp;Kumar Aryan,&nbsp;Torsha Roy,&nbsp;Subrata Kumar Midya,&nbsp;Tamal Basak","doi":"10.1007/s40328-022-00390-8","DOIUrl":null,"url":null,"abstract":"<div><p>The D-layer of the ionosphere doesn’t respond instantaneously to the incoming solar irradiation, rather, there’s a measurable amount of time delay (<span>\\(\\Delta t\\)</span>) between the incoming solar X-ray flux (<span>\\(\\phi (t)\\)</span>) during a solar flare and the respective change in the electron density profile (<span>\\(N_e(t)\\)</span>). The <span>\\(\\Delta t\\)</span> depends on the peak of the incoming X-ray flux (<span>\\(\\phi _{max}\\)</span>) during the flare. We solve the ‘electron continuity equation’ for the D-layer by numerical method for a selected set of 455 solar flares to obtain <span>\\(\\Delta t\\)</span> over six suitably chosen latitudes of the mid-latitude regions of both hemispheres and analyse the <span>\\(\\Delta t\\)</span>–<span>\\(\\phi _{max}\\)</span> profile. To analyse the latitude dependence of the dispersed nature of <span>\\(\\Delta t\\)</span>–<span>\\(\\phi _{max}\\)</span> profile, we define and compute two parameters, namely, (i) the RMS value of the D-layer response time delay (<span>\\(\\Delta t_{rms}\\)</span>) and (ii) the gradient of the slope (<i>m</i>) of the linear fitting on <span>\\(\\Delta t\\)</span>–<span>\\(log_{10}(\\phi _{max})\\)</span> profile over each of those chosen latitudes. Further, we compute the latitudinal variation of D-layer response time delay (<span>\\(\\Delta _{lat}(\\Delta t)\\)</span>) for selected pairs of chosen latitudes. To analyse the <span>\\(\\Delta _{lat}(\\Delta t)\\)</span>–<span>\\(\\phi _{max}\\)</span> profile, we compute a third parameter, namely, the RMS value of latitudinal variation of D-layer response time delay (<span>\\(\\Delta _{lat}(\\Delta t)_{rms}\\)</span>). We do a comparative analysis of these parameters across the chosen set of latitudes. Finally, we conclude quantitatively with possible explanations about the systematic latitude dependence and variation of the dispersed nature of <span>\\(\\Delta t\\)</span>–<span>\\(\\phi _{max}\\)</span> profile.</p></div>","PeriodicalId":48965,"journal":{"name":"Acta Geodaetica et Geophysica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40328-022-00390-8.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geodaetica et Geophysica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s40328-022-00390-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 2

Abstract

The D-layer of the ionosphere doesn’t respond instantaneously to the incoming solar irradiation, rather, there’s a measurable amount of time delay (\(\Delta t\)) between the incoming solar X-ray flux (\(\phi (t)\)) during a solar flare and the respective change in the electron density profile (\(N_e(t)\)). The \(\Delta t\) depends on the peak of the incoming X-ray flux (\(\phi _{max}\)) during the flare. We solve the ‘electron continuity equation’ for the D-layer by numerical method for a selected set of 455 solar flares to obtain \(\Delta t\) over six suitably chosen latitudes of the mid-latitude regions of both hemispheres and analyse the \(\Delta t\)\(\phi _{max}\) profile. To analyse the latitude dependence of the dispersed nature of \(\Delta t\)\(\phi _{max}\) profile, we define and compute two parameters, namely, (i) the RMS value of the D-layer response time delay (\(\Delta t_{rms}\)) and (ii) the gradient of the slope (m) of the linear fitting on \(\Delta t\)\(log_{10}(\phi _{max})\) profile over each of those chosen latitudes. Further, we compute the latitudinal variation of D-layer response time delay (\(\Delta _{lat}(\Delta t)\)) for selected pairs of chosen latitudes. To analyse the \(\Delta _{lat}(\Delta t)\)\(\phi _{max}\) profile, we compute a third parameter, namely, the RMS value of latitudinal variation of D-layer response time delay (\(\Delta _{lat}(\Delta t)_{rms}\)). We do a comparative analysis of these parameters across the chosen set of latitudes. Finally, we conclude quantitatively with possible explanations about the systematic latitude dependence and variation of the dispersed nature of \(\Delta t\)\(\phi _{max}\) profile.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与太阳耀斑有关的电离层响应时间延迟的定量分析
电离层的d层不会立即对入射的太阳辐射作出反应,相反,在太阳耀斑期间入射的太阳x射线通量(\(\phi (t)\))与电子密度剖面(\(N_e(t)\))的相应变化之间存在可测量的时间延迟(\(\Delta t\))。\(\Delta t\)取决于耀斑期间入射x射线通量的峰值(\(\phi _{max}\))。我们选择了455个太阳耀斑,用数值方法求解了d层的“电子连续性方程”,得到了两个半球中纬度地区六个适当纬度上的\(\Delta t\),并分析了\(\Delta t\) - \(\phi _{max}\)剖面。为了分析\(\Delta t\) - \(\phi _{max}\)剖面的离散性对纬度的依赖性,我们定义并计算了两个参数,即(i) d层响应时间延迟的RMS值(\(\Delta t_{rms}\))和(ii)在每个选择的纬度上对\(\Delta t\) - \(log_{10}(\phi _{max})\)剖面的线性拟合的斜率(m)的梯度。进一步,我们计算了所选纬度对d层响应时间延迟的纬度变化(\(\Delta _{lat}(\Delta t)\))。为了分析\(\Delta _{lat}(\Delta t)\) - \(\phi _{max}\)剖面,我们计算了第三个参数,即d层响应时间延迟的纬度变化的RMS值(\(\Delta _{lat}(\Delta t)_{rms}\))。我们在选定的纬度范围内对这些参数进行比较分析。最后,对\(\Delta t\) - \(\phi _{max}\)剖面分散性质的系统纬度依赖性和变化进行了定量分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Geodaetica et Geophysica
Acta Geodaetica et Geophysica GEOCHEMISTRY & GEOPHYSICS-
CiteScore
3.10
自引率
7.10%
发文量
26
期刊介绍: The journal publishes original research papers in the field of geodesy and geophysics under headings: aeronomy and space physics, electromagnetic studies, geodesy and gravimetry, geodynamics, geomathematics, rock physics, seismology, solid earth physics, history. Papers dealing with problems of the Carpathian region and its surroundings are preferred. Similarly, papers on topics traditionally covered by Hungarian geodesists and geophysicists (e.g. robust estimations, geoid, EM properties of the Earth’s crust, geomagnetic pulsations and seismological risk) are especially welcome.
期刊最新文献
Selection of a calibration system for relative gravimeters and testing of the processing using the example of the Zhetygen calibration baseline in Kazakhstan A forwarding spoofing detection algorithm for Beidou navigation satellite system vulnerability Machine learning assisted model based petrographic classification: a case study from Bokaro coal field Spatial and temporal analysis of daily terrestrial water storage anomalies in China Enhancing landslide inventory mapping through Multi-SAR image analysis: a comprehensive examination of current landslide zones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1