Fractal dimension analysis as an easy computational approach to improve breast cancer histopathological diagnosis

Q3 Immunology and Microbiology Applied Microscopy Pub Date : 2021-04-30 DOI:10.1186/s42649-021-00055-w
Lucas Glaucio da Silva, Waleska Rayanne Sizinia da Silva Monteiro, Tiago Medeiros de Aguiar Moreira, Maria Aparecida Esteves Rabelo, Emílio Augusto Campos Pereira de Assis, Gustavo Torres de Souza
{"title":"Fractal dimension analysis as an easy computational approach to improve breast cancer histopathological diagnosis","authors":"Lucas Glaucio da Silva,&nbsp;Waleska Rayanne Sizinia da Silva Monteiro,&nbsp;Tiago Medeiros de Aguiar Moreira,&nbsp;Maria Aparecida Esteves Rabelo,&nbsp;Emílio Augusto Campos Pereira de Assis,&nbsp;Gustavo Torres de Souza","doi":"10.1186/s42649-021-00055-w","DOIUrl":null,"url":null,"abstract":"<p>Histopathology is a well-established standard diagnosis employed for the majority of malignancies, including breast cancer. Nevertheless, despite training and standardization, it is considered operator-dependent and errors are still a concern. Fractal dimension analysis is a computational image processing technique that allows assessing the degree of complexity in patterns. We aimed here at providing a robust and easily attainable method for introducing computer-assisted techniques to histopathology laboratories. Slides from two databases were used: A) Breast Cancer Histopathological; and B) Grand Challenge on Breast Cancer Histology. Set A contained 2480 images from 24 patients with benign alterations, and 5429 images from 58 patients with breast cancer. Set B comprised 100 images of each type: normal tissue, benign alterations, in situ carcinoma, and invasive carcinoma. All images were analyzed with the FracLac algorithm in the ImageJ computational environment to yield the box count fractal dimension (Db) results. Images on set A on 40x magnification were statistically different (<i>p</i>?=?0.0003), whereas images on 400x did not present differences in their means. On set B, the mean Db values presented promissing statistical differences when comparing. Normal and/or benign images to in situ and/or invasive carcinoma (all <i>p</i>?&lt;?0.0001). Interestingly, there was no difference when comparing normal tissue to benign alterations. These data corroborate with previous work in which fractal analysis allowed differentiating malignancies. Computer-aided diagnosis algorithms may beneficiate from using Db data; specific Db cut-off values may yield ~?99% specificity in diagnosing breast cancer. Furthermore, the fact that it allows assessing tissue complexity, this tool may be used to understand the progression of the histological alterations in cancer.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42649-021-00055-w","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microscopy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42649-021-00055-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 8

Abstract

Histopathology is a well-established standard diagnosis employed for the majority of malignancies, including breast cancer. Nevertheless, despite training and standardization, it is considered operator-dependent and errors are still a concern. Fractal dimension analysis is a computational image processing technique that allows assessing the degree of complexity in patterns. We aimed here at providing a robust and easily attainable method for introducing computer-assisted techniques to histopathology laboratories. Slides from two databases were used: A) Breast Cancer Histopathological; and B) Grand Challenge on Breast Cancer Histology. Set A contained 2480 images from 24 patients with benign alterations, and 5429 images from 58 patients with breast cancer. Set B comprised 100 images of each type: normal tissue, benign alterations, in situ carcinoma, and invasive carcinoma. All images were analyzed with the FracLac algorithm in the ImageJ computational environment to yield the box count fractal dimension (Db) results. Images on set A on 40x magnification were statistically different (p?=?0.0003), whereas images on 400x did not present differences in their means. On set B, the mean Db values presented promissing statistical differences when comparing. Normal and/or benign images to in situ and/or invasive carcinoma (all p?<?0.0001). Interestingly, there was no difference when comparing normal tissue to benign alterations. These data corroborate with previous work in which fractal analysis allowed differentiating malignancies. Computer-aided diagnosis algorithms may beneficiate from using Db data; specific Db cut-off values may yield ~?99% specificity in diagnosing breast cancer. Furthermore, the fact that it allows assessing tissue complexity, this tool may be used to understand the progression of the histological alterations in cancer.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分形维数分析作为一种简便的计算方法来提高乳腺癌的组织病理学诊断
组织病理学是一个公认的标准诊断用于大多数恶性肿瘤,包括乳腺癌。然而,尽管进行了培训和标准化,它仍然被认为是依赖于操作人员的,错误仍然是一个问题。分形维数分析是一种计算图像处理技术,可以评估图案的复杂程度。我们的目的是提供一个强大的和容易实现的方法,介绍计算机辅助技术到组织病理学实验室。使用了来自两个数据库的幻灯片:A)乳腺癌组织病理学;B)乳腺癌组织学大挑战。A组包含24例良性病变患者的2480张图像,以及58例乳腺癌患者的5429张图像。B组包括100张不同类型的图像:正常组织、良性改变、原位癌和浸润性癌。在ImageJ计算环境中使用FracLac算法对所有图像进行分析,得出盒数分形维数(Db)结果。集合A在40倍放大率下的图像具有统计学差异(p = 0.0003),而在400倍放大率下的图像在其平均值上没有差异。在集合B上,在比较时,平均Db值呈现出有希望的统计差异。原位癌和/或浸润性癌的正常和/或良性影像学差异(p < 0.01)。有趣的是,当比较正常组织和良性改变时,没有差异。这些数据证实了先前的工作,分形分析可以区分恶性肿瘤。计算机辅助诊断算法可能受益于使用数据库数据;特定Db临界值可能产生~?诊断乳腺癌的特异性为99%此外,事实上,它允许评估组织的复杂性,这个工具可以用来了解癌症的组织学改变的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Microscopy
Applied Microscopy Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
3.40
自引率
0.00%
发文量
10
审稿时长
10 weeks
期刊介绍: Applied Microscopy is a peer-reviewed journal sponsored by the Korean Society of Microscopy. The journal covers all the interdisciplinary fields of technological developments in new microscopy methods and instrumentation and their applications to biological or materials science for determining structure and chemistry. ISSN: 22875123, 22874445.
期刊最新文献
Material analysis on semi-permanent makeup needles Analytical microscopy techniques using coaxial and oblique illuminations to detect thin glass particulates generated from glass vials for parenteral drug products Correction: Microstructural, mechanical, and electrochemical analysis of carbon doped AISI carbon steels In situ observation of catalyst nanoparticle sintering resistance on oxide supports via gas phase transmission electron microscopy Research reviews on myosin head interactions with F-actin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1