Three-dimensional evolution of body and fluid motion near a wall

IF 2.2 3区 工程技术 Q2 MECHANICS Theoretical and Computational Fluid Dynamics Pub Date : 2022-10-30 DOI:10.1007/s00162-022-00631-0
Frank T. Smith, Kevin Liu
{"title":"Three-dimensional evolution of body and fluid motion near a wall","authors":"Frank T. Smith,&nbsp;Kevin Liu","doi":"10.1007/s00162-022-00631-0","DOIUrl":null,"url":null,"abstract":"<div><p>Evolution of three-dimensional body motion within surrounding three-dimensional fluid motion is addressed, each motion affecting the other significantly in a dynamic fluid–body interaction. This unsteady problem is set near a wall. The spatial three-dimensionality present is a new feature. For inviscid incompressible fluid, a basic nonlinear formulation is described, followed by a linearised form as a first exploration of parameter space and solution responses. The problem reduces to solving Poisson’s equation within the underbody planform, subject to mixed boundary conditions and to coupling with integral equations. Numerical and analytical properties show dependence mainly on the normal and pitch motions, as well as instability or bounded oscillations depending on the position of the centre of mass of the body, and a variety of three-dimensional shapes is examined.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00162-022-00631-0.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00162-022-00631-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

Evolution of three-dimensional body motion within surrounding three-dimensional fluid motion is addressed, each motion affecting the other significantly in a dynamic fluid–body interaction. This unsteady problem is set near a wall. The spatial three-dimensionality present is a new feature. For inviscid incompressible fluid, a basic nonlinear formulation is described, followed by a linearised form as a first exploration of parameter space and solution responses. The problem reduces to solving Poisson’s equation within the underbody planform, subject to mixed boundary conditions and to coupling with integral equations. Numerical and analytical properties show dependence mainly on the normal and pitch motions, as well as instability or bounded oscillations depending on the position of the centre of mass of the body, and a variety of three-dimensional shapes is examined.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物体的三维演化和壁面附近的流体运动
三维物体运动在周围的三维流体运动中演变,每个运动在动态流体-体相互作用中显著影响另一个运动。这个不稳定问题被设置在墙附近。空间立体呈现是一个新的特征。对于无粘不可压缩流体,描述了一个基本的非线性公式,然后是线性化形式,作为参数空间和解响应的第一次探索。问题归结为求解底面平台内的泊松方程,受混合边界条件约束,并与积分方程耦合。数值和分析性质表明,主要依赖于正常和俯仰运动,以及不稳定或有界振荡,这取决于身体的质量中心的位置,并检查了各种三维形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
2.90%
发文量
38
审稿时长
>12 weeks
期刊介绍: Theoretical and Computational Fluid Dynamics provides a forum for the cross fertilization of ideas, tools and techniques across all disciplines in which fluid flow plays a role. The focus is on aspects of fluid dynamics where theory and computation are used to provide insights and data upon which solid physical understanding is revealed. We seek research papers, invited review articles, brief communications, letters and comments addressing flow phenomena of relevance to aeronautical, geophysical, environmental, material, mechanical and life sciences. Papers of a purely algorithmic, experimental or engineering application nature, and papers without significant new physical insights, are outside the scope of this journal. For computational work, authors are responsible for ensuring that any artifacts of discretization and/or implementation are sufficiently controlled such that the numerical results unambiguously support the conclusions drawn. Where appropriate, and to the extent possible, such papers should either include or reference supporting documentation in the form of verification and validation studies.
期刊最新文献
Long wavelength analysis amendment on the cilia beating assisted peristalsis in a tube Wave reflections and resonance in a Mach 0.9 turbulent jet Extended cluster-based network modeling for coherent structures in turbulent flows Proper orthogonal decomposition reduced-order model of the global oceans A hybrid method for aeroacoustic computation of moving rigid bodies in low Mach number flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1