Coal fly ash reinforcement for the property enhancement of crude glycerol-based polyurethane foam composites

Linda Zhang, Weihong Zhang, Mengyu Li, Pan Li, Xiaoyang Zheng, Chun Chang, Weihua Zou
{"title":"Coal fly ash reinforcement for the property enhancement of crude glycerol-based polyurethane foam composites","authors":"Linda Zhang,&nbsp;Weihong Zhang,&nbsp;Mengyu Li,&nbsp;Pan Li,&nbsp;Xiaoyang Zheng,&nbsp;Chun Chang,&nbsp;Weihua Zou","doi":"10.1007/s42768-022-00112-4","DOIUrl":null,"url":null,"abstract":"<div><p>Coal fly ash (CFA) is the main combustion residue of fine ground coal in the process of coal-fired thermal power generation, and crude glycerol (CG) is the byproduct of biodiesel production. The novel polyurethane/CFA (PU/CFA) foam composites were prepared from CFA and CG. Two kinds of CFA, CFAI and CFAII were used as fillers for the property enhancement of PU/CFA composites, and the effects on foaming behavior and the reinforcement for the PU/CFA composites were investigated. It was found that the addition of CFA can prolong the rising time and tack-free time, and the maximum rising time and tack-free time increased to 40 s and 42 s. Meanwhile, the maximum compressive strength of PU/CFAI and PU/CFAII increased to 0.2186 MPa and 0.2284 MPa with the addition of CFA. The thermogravimetric analysis showed that the PU/CFA composites underwent three stages of thermal decomposition, and the amount of carbon residue increased from 23.11% to 67.91% with increasing CFA dosage. Moreover, the values of the limit oxygen index increased from 21.5% to 23.7% with the incorporation of CFA into the PU foam matrix, indicating that CFA improved the thermal stability and flame retardant performance of the composites. This study provided a new method for the recycling and high-value utilization of CG and CFA.</p></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-022-00112-4.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Disposal & Sustainable Energy","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s42768-022-00112-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Coal fly ash (CFA) is the main combustion residue of fine ground coal in the process of coal-fired thermal power generation, and crude glycerol (CG) is the byproduct of biodiesel production. The novel polyurethane/CFA (PU/CFA) foam composites were prepared from CFA and CG. Two kinds of CFA, CFAI and CFAII were used as fillers for the property enhancement of PU/CFA composites, and the effects on foaming behavior and the reinforcement for the PU/CFA composites were investigated. It was found that the addition of CFA can prolong the rising time and tack-free time, and the maximum rising time and tack-free time increased to 40 s and 42 s. Meanwhile, the maximum compressive strength of PU/CFAI and PU/CFAII increased to 0.2186 MPa and 0.2284 MPa with the addition of CFA. The thermogravimetric analysis showed that the PU/CFA composites underwent three stages of thermal decomposition, and the amount of carbon residue increased from 23.11% to 67.91% with increasing CFA dosage. Moreover, the values of the limit oxygen index increased from 21.5% to 23.7% with the incorporation of CFA into the PU foam matrix, indicating that CFA improved the thermal stability and flame retardant performance of the composites. This study provided a new method for the recycling and high-value utilization of CG and CFA.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粉煤灰增强粗甘油基聚氨酯泡沫复合材料性能的研究
粉煤灰(CFA)是燃煤火力发电过程中细磨煤的主要燃烧残渣,粗甘油(CG)是生产生物柴油的副产物。以CFA和CG为原料制备了新型聚氨酯/CFA (PU/CFA)泡沫复合材料。采用CFAI和CFAI两种CFA作为PU/CFA复合材料的增强填料,研究了其对PU/CFA复合材料发泡性能和增强性能的影响。结果表明,CFA的加入可以延长上升时间和无粘着时间,最大上升时间和无粘着时间分别增加到40 s和42 s。同时,随着CFA的加入,PU/CFAI和PU/CFAI的最大抗压强度分别提高到0.2186 MPa和0.2284 MPa。热重分析表明,PU/CFA复合材料经历了3个阶段的热分解,随着CFA用量的增加,残炭量从23.11%增加到67.91%。此外,在聚氨酯泡沫基体中加入CFA后,极限氧指数从21.5%提高到23.7%,表明CFA提高了复合材料的热稳定性和阻燃性能。本研究为CG和CFA的回收利用和高价值利用提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing methane production in anaerobic co-digestion of food wastes and sewage sludge: roles of different types of iron amendments A two-stage strategy combining vermicomposting and membrane-covered aerobic composting to achieve value-added recycling of kitchen waste solid residues Slum dynamics: the interplay of remittances, waste disposal and health outcomes A review on graphite carbon nitride (g-C3N4)-based composite for antibiotics and dye degradation and hydrogen production Functionalizing carbon nanofibers with chicken manure to catalyse oxygen reduction reaction in a fuel cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1