The Zeros of the Partition Function of the Pinning Model

IF 0.9 3区 数学 Q3 MATHEMATICS, APPLIED Mathematical Physics, Analysis and Geometry Pub Date : 2022-06-09 DOI:10.1007/s11040-022-09428-3
Giambattista Giacomin, Rafael L. Greenblatt
{"title":"The Zeros of the Partition Function of the Pinning Model","authors":"Giambattista Giacomin,&nbsp;Rafael L. Greenblatt","doi":"10.1007/s11040-022-09428-3","DOIUrl":null,"url":null,"abstract":"<div><p>We aim at understanding for which (complex) values of the potential the pinning partition function vanishes. The pinning model is a Gibbs measure based on discrete renewal processes with power law inter-arrival distributions. We obtain some results for rather general inter-arrival laws, but we achieve a substantially more complete understanding for a specific one parameter family of inter-arrivals. We show, for such a specific family, that the zeros asymptotically lie on (and densely fill) a closed curve that, unsurprisingly, touches the real axis only in one point (the critical point of the model). We also perform a sharper analysis of the zeros close to the critical point and we exploit this analysis to approach the challenging problem of Griffiths singularities for the disordered pinning model. The techniques we exploit are both probabilistic and analytical. Regarding the first, a central role is played by limit theorems for heavy tail random variables. As for the second, potential theory and singularity analysis of generating functions, along with their interplay, will be at the heart of several of our arguments.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":"25 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-022-09428-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We aim at understanding for which (complex) values of the potential the pinning partition function vanishes. The pinning model is a Gibbs measure based on discrete renewal processes with power law inter-arrival distributions. We obtain some results for rather general inter-arrival laws, but we achieve a substantially more complete understanding for a specific one parameter family of inter-arrivals. We show, for such a specific family, that the zeros asymptotically lie on (and densely fill) a closed curve that, unsurprisingly, touches the real axis only in one point (the critical point of the model). We also perform a sharper analysis of the zeros close to the critical point and we exploit this analysis to approach the challenging problem of Griffiths singularities for the disordered pinning model. The techniques we exploit are both probabilistic and analytical. Regarding the first, a central role is played by limit theorems for heavy tail random variables. As for the second, potential theory and singularity analysis of generating functions, along with their interplay, will be at the heart of several of our arguments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钉钉模型配分函数的零点
我们的目的是了解哪些位势(复)值的固定配分函数会消失。钉住模型是基于离散更新过程的吉布斯测度,具有幂律到达间分布。我们得到了一些相当普遍的入境间规律的结果,但我们对入境间的一个特定参数族有了更完整的理解。我们证明,对于这样一个特定的族,零渐近地位于(并密集填充)一条封闭曲线上,不出所料,该曲线仅在一个点(模型的临界点)上接触实轴。我们还对临界点附近的零点进行了更清晰的分析,并利用这一分析来解决无序固定模型的Griffiths奇点问题。我们利用的技术既有概率性,也有分析性。关于第一种,重尾随机变量的极限定理起着中心作用。至于第二个,生成函数的势能理论和奇点分析,以及它们之间的相互作用,将是我们几个论点的核心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Physics, Analysis and Geometry
Mathematical Physics, Analysis and Geometry 数学-物理:数学物理
CiteScore
2.10
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas. The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process. The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed. The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.
期刊最新文献
Trees and Superintegrable Lotka–Volterra Families Equality of Magnetization and Edge Current for Interacting Lattice Fermions at Positive Temperature Braided Hopf algebras and gauge transformations Index of Bipolar Surfaces to Otsuki Tori Sharp Interface Limit for a Quasi-linear Large Deviation Rate Function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1