On the topographic bias by analytical continuation in geoid determination

IF 0.5 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Studia Geophysica et Geodaetica Pub Date : 2023-04-25 DOI:10.1007/s11200-022-0337-4
Lars E. Sjöberg
{"title":"On the topographic bias by analytical continuation in geoid determination","authors":"Lars E. Sjöberg","doi":"10.1007/s11200-022-0337-4","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the topographic bias in gravimetric geoid determination when analytically downward continuing the disturbing potential from the Earth’s surface to sea level. The total bias is subdivided into those of the Bouguer shell or plate and the terrain. In this process, the potential of the Bouguer shell always has a downward continuation bias in the process, which increases with the square of the topographic height and typically exceeds 1–2 cm for elevations higher than 1 km. The main conclusion is that the terrain does not provide a potential bias except possibly for masses located inside a dome of height of about 0.4 times the height of the computation point, and base radius equal to the height of the computation point. This result implies that the potential of all terrain masses of arbitrary density located exterior to the Bouguer shell as well as those outside the dome are unbiasedly downward continued to sea level.</p></div>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"67 1-2","pages":"27 - 38"},"PeriodicalIF":0.5000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11200-022-0337-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-022-0337-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the topographic bias in gravimetric geoid determination when analytically downward continuing the disturbing potential from the Earth’s surface to sea level. The total bias is subdivided into those of the Bouguer shell or plate and the terrain. In this process, the potential of the Bouguer shell always has a downward continuation bias in the process, which increases with the square of the topographic height and typically exceeds 1–2 cm for elevations higher than 1 km. The main conclusion is that the terrain does not provide a potential bias except possibly for masses located inside a dome of height of about 0.4 times the height of the computation point, and base radius equal to the height of the computation point. This result implies that the potential of all terrain masses of arbitrary density located exterior to the Bouguer shell as well as those outside the dome are unbiasedly downward continued to sea level.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大地水准面测定中解析延拓的地形偏差
我们考虑地形偏差的重力大地水准面确定时,分析向下延续干扰势从地球表面到海平面。总偏压又分为布格壳或板的偏压和地形的偏压。在这一过程中,布格壳的电位始终具有向下延伸的偏置,该偏置随地形高度的平方而增大,在海拔高于1 km时通常超过1 ~ 2 cm。主要结论是,地形不提供潜在的偏差,除了可能位于高度约为计算点高度的0.4倍的圆顶内的质量,并且基础半径等于计算点的高度。这一结果表明,位于布格壳外和穹顶外的任意密度的所有地形质量的势均无偏向下持续到海平面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Studia Geophysica et Geodaetica
Studia Geophysica et Geodaetica 地学-地球化学与地球物理
CiteScore
1.90
自引率
0.00%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.
期刊最新文献
Present-day crustal deformation based on an interpolated GPS velocity field in the collision zone of the Arabia-Eurasia tectonic plates Effect of the 2021 Cumbre Vieja eruption on precipitable water vapor and atmospheric particles analysed using GNSS and remote sensing Geophysical structure of a local area in the lunar Oceanus Procellarum region investigated using the gravity gradient method Estimation of the minimal detectable horizontal acceleration of GNSS CORS The area of rhumb polygons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1