{"title":"Applicability of digital PCR to the investigation of pediatric-onset genetic disorders","authors":"Matthew E.R. Butchbach","doi":"10.1016/j.bdq.2016.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>Early-onset rare diseases have a strong impact on child healthcare even though the incidence of each of these diseases is relatively low. In order to better manage the care of these children, it is imperative to quickly diagnose the molecular bases for these disorders as well as to develop technologies with prognostic potential. Digital PCR (dPCR) is well suited for this role by providing an absolute quantification of the target DNA within a sample. This review illustrates how dPCR can be used to identify genes associated with pediatric-onset disorders, to identify copy number status of important disease-causing genes and variants and to quantify modifier genes. It is also a powerful technology to track changes in genomic biomarkers with disease progression. Based on its capability to accurately and reliably detect genomic alterations with high sensitivity and a large dynamic detection range, dPCR has the potential to become the tool of choice for the verification of pediatric disease-associated mutations identified by next generation sequencing, copy number determination and noninvasive prenatal screening.</p></div>","PeriodicalId":38073,"journal":{"name":"Biomolecular Detection and Quantification","volume":"10 ","pages":"Pages 9-14"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bdq.2016.06.002","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Detection and Quantification","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214753516300158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 12
Abstract
Early-onset rare diseases have a strong impact on child healthcare even though the incidence of each of these diseases is relatively low. In order to better manage the care of these children, it is imperative to quickly diagnose the molecular bases for these disorders as well as to develop technologies with prognostic potential. Digital PCR (dPCR) is well suited for this role by providing an absolute quantification of the target DNA within a sample. This review illustrates how dPCR can be used to identify genes associated with pediatric-onset disorders, to identify copy number status of important disease-causing genes and variants and to quantify modifier genes. It is also a powerful technology to track changes in genomic biomarkers with disease progression. Based on its capability to accurately and reliably detect genomic alterations with high sensitivity and a large dynamic detection range, dPCR has the potential to become the tool of choice for the verification of pediatric disease-associated mutations identified by next generation sequencing, copy number determination and noninvasive prenatal screening.