George S. Slyusarev, Elizaveta K. Skalon, Victor V. Starunov
{"title":"Evolution of Orthonectida body plan","authors":"George S. Slyusarev, Elizaveta K. Skalon, Victor V. Starunov","doi":"10.1111/ede.12462","DOIUrl":null,"url":null,"abstract":"<p>Orthonectida is an enigmatic group of animals with still uncertain phylogenetic position. Orthonectids parasitize various marine invertebrates. Their life cycle comprises a parasitic plasmodium and free-living males and females. Sexual individuals develop inside the plasmodium; after egress from the host they copulate in the external environment, and the larva, which has developed inside the female infects a new host. In a series of studied orthonectid species simplification of free-living sexual individuals can be clearly traced. The number of longitudinal and transverse muscle fibers is gradually reduced. In the nervous system, simplification is even more pronounced. The number of neurons constituting the ganglion is dramatically reduced from 200 in <i>Rhopalura ophiocomae</i> to 4–6 in <i>Intoshia variabili</i>. The peripheral nervous system undergoes gradual simplification as well. The morphological simplification is accompanied with genome reduction. However, not only genes are lost from the genome, it also undergoes compactization ensured by extreme reduction of intergenic distances, short intron sizes, and elimination of repetitive elements. The main trend in orthonectid evolution is simplification and miniaturization of free-living sexual individuals coupled with reduction and compactization of the genome.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"26 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution & Development","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ede.12462","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Orthonectida is an enigmatic group of animals with still uncertain phylogenetic position. Orthonectids parasitize various marine invertebrates. Their life cycle comprises a parasitic plasmodium and free-living males and females. Sexual individuals develop inside the plasmodium; after egress from the host they copulate in the external environment, and the larva, which has developed inside the female infects a new host. In a series of studied orthonectid species simplification of free-living sexual individuals can be clearly traced. The number of longitudinal and transverse muscle fibers is gradually reduced. In the nervous system, simplification is even more pronounced. The number of neurons constituting the ganglion is dramatically reduced from 200 in Rhopalura ophiocomae to 4–6 in Intoshia variabili. The peripheral nervous system undergoes gradual simplification as well. The morphological simplification is accompanied with genome reduction. However, not only genes are lost from the genome, it also undergoes compactization ensured by extreme reduction of intergenic distances, short intron sizes, and elimination of repetitive elements. The main trend in orthonectid evolution is simplification and miniaturization of free-living sexual individuals coupled with reduction and compactization of the genome.
期刊介绍:
Evolution & Development serves as a voice for the rapidly growing research community at the interface of evolutionary and developmental biology. The exciting re-integration of these two fields, after almost a century''s separation, holds much promise as the focus of a broader synthesis of biological thought. Evolution & Development publishes works that address the evolution/development interface from a diversity of angles. The journal welcomes papers from paleontologists, population biologists, developmental biologists, and molecular biologists, but also encourages submissions from professionals in other fields where relevant research is being carried out, from mathematics to the history and philosophy of science.