Multimode sensing based on optical microcavities.

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Frontiers of Optoelectronics Pub Date : 2023-10-27 DOI:10.1007/s12200-023-00084-1
Yanran Wu, Bing Duan, Changhong Li, Daquan Yang
{"title":"Multimode sensing based on optical microcavities.","authors":"Yanran Wu,&nbsp;Bing Duan,&nbsp;Changhong Li,&nbsp;Daquan Yang","doi":"10.1007/s12200-023-00084-1","DOIUrl":null,"url":null,"abstract":"<p><p>Optical microcavities have the ability to confine photons in small mode volumes for long periods of time, greatly enhancing light-matter interactions, and have become one of the research hotspots in international academia. In recent years, sensing applications in complex environments have inspired the development of multimode optical microcavity sensors. These multimode sensors can be used not only for multi-parameter detection but also to improve measurement precision. In this review, we introduce multimode sensing methods based on optical microcavities and present an overview of the multimode single/multi-parameter optical microcavities sensors. Expected further research activities are also put forward.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611689/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-023-00084-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Optical microcavities have the ability to confine photons in small mode volumes for long periods of time, greatly enhancing light-matter interactions, and have become one of the research hotspots in international academia. In recent years, sensing applications in complex environments have inspired the development of multimode optical microcavity sensors. These multimode sensors can be used not only for multi-parameter detection but also to improve measurement precision. In this review, we introduce multimode sensing methods based on optical microcavities and present an overview of the multimode single/multi-parameter optical microcavities sensors. Expected further research activities are also put forward.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光学微腔的多模传感。
光学微腔具有将光子长时间限制在小模体积内的能力,极大地增强了光与物质的相互作用,已成为国际学术界的研究热点之一。近年来,复杂环境中的传感应用激发了多模光学微腔传感器的发展。这些多模传感器不仅可以用于多参数检测,还可以提高测量精度。在这篇综述中,我们介绍了基于光学微腔的多模传感方法,并概述了多模单/多参数光学微腔传感器。还提出了预期的进一步研究活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Optoelectronics
Frontiers of Optoelectronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
7.80
自引率
0.00%
发文量
583
期刊介绍: Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on. Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics. Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology. ● Presents the latest developments in optoelectronics and optics ● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications ● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more
期刊最新文献
Vehicular Mini-LED backlight display inspection based on residual global context mechanism. Plasma photonic crystal 'kaleidoscope' with flexible control of topology and electromagnetism. Information processing at the speed of light. Quantitative modeling of perovskite-based direct X-ray flat panel detectors. Dual-functional application of Ca2Ta2O7:Bi3+/Eu3+ phosphors in multicolor tunable optical thermometry and WLED.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1