A DNA turbine powered by a transmembrane potential across a nanopore

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nature nanotechnology Pub Date : 2023-10-26 DOI:10.1038/s41565-023-01527-8
Xin Shi, Anna-Katharina Pumm, Christopher Maffeo, Fabian Kohler, Elija Feigl, Wenxuan Zhao, Daniel Verschueren, Ramin Golestanian, Aleksei Aksimentiev, Hendrik Dietz, Cees Dekker
{"title":"A DNA turbine powered by a transmembrane potential across a nanopore","authors":"Xin Shi, Anna-Katharina Pumm, Christopher Maffeo, Fabian Kohler, Elija Feigl, Wenxuan Zhao, Daniel Verschueren, Ramin Golestanian, Aleksei Aksimentiev, Hendrik Dietz, Cees Dekker","doi":"10.1038/s41565-023-01527-8","DOIUrl":null,"url":null,"abstract":"Rotary motors play key roles in energy transduction, from macroscale windmills to nanoscale turbines such as ATP synthase in cells. Despite our abilities to construct engines at many scales, developing functional synthetic turbines at the nanoscale has remained challenging. Here, we experimentally demonstrate rationally designed nanoscale DNA origami turbines with three chiral blades. These DNA nanoturbines are 24–27 nm in height and diameter and can utilize transmembrane electrochemical potentials across nanopores to drive DNA bundles into sustained unidirectional rotations of up to 10 revolutions s−1. The rotation direction is set by the designed chirality of the turbine. All-atom molecular dynamics simulations show how hydrodynamic flows drive this turbine. At high salt concentrations, the rotation direction of turbines with the same chirality is reversed, which is explained by a change in the anisotropy of the electrophoretic mobility. Our artificial turbines operate autonomously in physiological conditions, converting energy from naturally abundant electrochemical potentials into mechanical work. The results open new possibilities for engineering active robotics at the nanoscale. A nanoscale DNA origami turbine is shown to perform mechanical rotation by directly harvesting transmembrane potential energy from an ion-concentration gradient across a solid-state nanopore. The direction of rotation is set by the designed chiral twist in the turbine’s blades.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 3","pages":"338-344"},"PeriodicalIF":38.1000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41565-023-01527-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-023-01527-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rotary motors play key roles in energy transduction, from macroscale windmills to nanoscale turbines such as ATP synthase in cells. Despite our abilities to construct engines at many scales, developing functional synthetic turbines at the nanoscale has remained challenging. Here, we experimentally demonstrate rationally designed nanoscale DNA origami turbines with three chiral blades. These DNA nanoturbines are 24–27 nm in height and diameter and can utilize transmembrane electrochemical potentials across nanopores to drive DNA bundles into sustained unidirectional rotations of up to 10 revolutions s−1. The rotation direction is set by the designed chirality of the turbine. All-atom molecular dynamics simulations show how hydrodynamic flows drive this turbine. At high salt concentrations, the rotation direction of turbines with the same chirality is reversed, which is explained by a change in the anisotropy of the electrophoretic mobility. Our artificial turbines operate autonomously in physiological conditions, converting energy from naturally abundant electrochemical potentials into mechanical work. The results open new possibilities for engineering active robotics at the nanoscale. A nanoscale DNA origami turbine is shown to perform mechanical rotation by directly harvesting transmembrane potential energy from an ion-concentration gradient across a solid-state nanopore. The direction of rotation is set by the designed chiral twist in the turbine’s blades.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种DNA涡轮机,由纳米孔上的跨膜电位提供动力。
旋转电机在能量传递中发挥着关键作用,从大型风车到细胞中的ATP合成酶等纳米级涡轮机。尽管我们有能力在许多规模上制造发动机,但在纳米尺度上开发功能性合成涡轮机仍然具有挑战性。在这里,我们通过实验展示了合理设计的具有三个手性叶片的纳米级DNA折纸涡轮机。这些DNA纳米涡轮机是24-27 纳米的高度和直径,并且可以利用跨纳米孔的跨膜电化学电势来驱动DNA束进入高达10 转数 s-1.旋转方向由涡轮机的设计手性设定。全原子分子动力学模拟显示了流体动力学流是如何驱动这种涡轮机的。在高盐浓度下,具有相同手性的涡轮机的旋转方向相反,这可以通过电泳迁移率的各向异性的变化来解释。我们的人造涡轮机在生理条件下自主运行,将自然丰富的电化学电势中的能量转化为机械功。研究结果为在纳米尺度上设计主动机器人开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
期刊最新文献
Organic radio-afterglow nanoprobes for cancer theranostics A cascade X-ray energy converting approach toward radio-afterglow cancer theranostics Silk protein connecting water and nanofabrication The climate crisis is a call for action for nanotechnology Nanotechnology solutions for the climate crisis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1