Farhan Saleem, Wenxia Zhang, Saadia Hina, Xiaodong Zeng, Irfan Ullah, Tehmina Bibi, Dike Victor Nnamdi
{"title":"Population Exposure Changes to Mean and Extreme Climate Events Over Pakistan and Associated Mechanisms","authors":"Farhan Saleem, Wenxia Zhang, Saadia Hina, Xiaodong Zeng, Irfan Ullah, Tehmina Bibi, Dike Victor Nnamdi","doi":"10.1029/2023GH000887","DOIUrl":null,"url":null,"abstract":"<p>The increasing prevalence of warmer trends and climate extremes exacerbate the population's exposure to urban settlements. This work investigated population exposure changes to mean and extreme climate events in different Agro-Ecological Zones (AEZs) of Pakistan and associated mechanisms (1979−2020). Spatiotemporal trends in mean and extreme temperatures revealed significant warming mainly over northern, northeastern, and southern AEZs. In contrast, mean-to-extreme precipitation changes showed non-uniform patterns with a significant increase in the northeast AEZs. Population exposure to mean (extreme) temperature and precipitation events increased two-fold during 2000–2020. The AEZs in urban settlements (i.e., Indus Delta, Northern Irrigated Plain, and Barani/Rainfall) show a maximum exposure to extreme temperatures of about 70–100 × 10<sup>6</sup> (person-days) in the reference period (1979−1999), which increases to 140–200 × 10<sup>6</sup> person-days in the recent period (2000−2020). In addition, the highest exposure to extreme precipitation days also increases to 40–200 × 10<sup>6</sup> person-days during 2000–2020 than 1979−1999 (20–100 × 10<sup>6</sup>) person-days. Relative changes in exposure are large (60%–90%) for the AEZs across northeast Pakistan, justifying the spatial population patterns over these zones. Overall, the observed changes in exposure are primarily attributed to the climate effect (50%) over most AEZs except Northern Irrigated Plain for R10 and R20 events, where the interaction effect takes the lead. The population exposure rapidly increased over major AEZs of Pakistan, which could be more vulnerable to extreme events due to rapid urbanization and population growth in the near future.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"7 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10599709/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohealth","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GH000887","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing prevalence of warmer trends and climate extremes exacerbate the population's exposure to urban settlements. This work investigated population exposure changes to mean and extreme climate events in different Agro-Ecological Zones (AEZs) of Pakistan and associated mechanisms (1979−2020). Spatiotemporal trends in mean and extreme temperatures revealed significant warming mainly over northern, northeastern, and southern AEZs. In contrast, mean-to-extreme precipitation changes showed non-uniform patterns with a significant increase in the northeast AEZs. Population exposure to mean (extreme) temperature and precipitation events increased two-fold during 2000–2020. The AEZs in urban settlements (i.e., Indus Delta, Northern Irrigated Plain, and Barani/Rainfall) show a maximum exposure to extreme temperatures of about 70–100 × 106 (person-days) in the reference period (1979−1999), which increases to 140–200 × 106 person-days in the recent period (2000−2020). In addition, the highest exposure to extreme precipitation days also increases to 40–200 × 106 person-days during 2000–2020 than 1979−1999 (20–100 × 106) person-days. Relative changes in exposure are large (60%–90%) for the AEZs across northeast Pakistan, justifying the spatial population patterns over these zones. Overall, the observed changes in exposure are primarily attributed to the climate effect (50%) over most AEZs except Northern Irrigated Plain for R10 and R20 events, where the interaction effect takes the lead. The population exposure rapidly increased over major AEZs of Pakistan, which could be more vulnerable to extreme events due to rapid urbanization and population growth in the near future.
期刊介绍:
GeoHealth will publish original research, reviews, policy discussions, and commentaries that cover the growing science on the interface among the Earth, atmospheric, oceans and environmental sciences, ecology, and the agricultural and health sciences. The journal will cover a wide variety of global and local issues including the impacts of climate change on human, agricultural, and ecosystem health, air and water pollution, environmental persistence of herbicides and pesticides, radiation and health, geomedicine, and the health effects of disasters. Many of these topics and others are of critical importance in the developing world and all require bringing together leading research across multiple disciplines.